![]() Prof. dr hab. Wojciech RypniewskiHead of the Structure-Function Relationship in Biological Molecules Group at the Center for Biocrystallographic Research at the Institute of Bioorganic Chemistry of the Polish Academy of Sciences in Poznan.
- B.Sc. (Hons) 1983: University of York, England.
Publications[98] The emergence of biological homochirality. (2023), A. Kiliszek, and W. Rypniewski, Acta Biochim. Pol., 70:481-485 (doi: 10.18388/abp.2020_6914).![]()
[97] Exploring structural determinants and the role of nucleolin
in formation of the long-range interaction between untranslated regions
of p53 mRNA. (2023), A. Kiliszek, W. Rypniewski, and L. Blaszczyk, RNA,
29:630-643 (doi: 10.1261/rna.079378.122).
[96] Carboranyl-1,8-naphthalimide intercalators induce lysosomal membrane
permeabilization and ferroptosis in cancer cell lines. (2023), S. Rykowski,
D. Gurda-Wozna, A. Fedoruk-Wyszomirska, M. Orlicka-Plocka, A. Kowalczyk,
P. Staczek, M. Denel-Bobrowska, K. Biniek-Antosiak, W. Rypniewski,
E. Wyszko, and A.B. Olejniczak, J. Enzyme Inhib. Med. Chem., 38:1,2171028
(doi: 10.1080/14756366.2023.2171028).
[95] Structure and thermodynamics of a UGG motif interacting with Ba2+
and other metal ions: accommodating changes in the RNA structure
and the presence of a G(syn)-G(syn) pair. (2023), A. Kiliszek,
M. Pluta, M. Bejger, and W. Rypniewski, RNA, 29:44-54
(doi: 10.1261/rna.079414.122).
[94] Structural, thermodynamic and enzymatic characterization of
N,N-diacetylchitobiose deacetylase from Pyrococcus chitonophagus. (2022),
K. Biniek-Antosiak, M. Bejger, J. Sliwiak, D. Baranowski, A.S.A. Mohammed,
D.I. Svergun, and W. Rypniewski, Int. J. Mol. Sci. 23:15736
(doi: 10.3390/ijms232415736).
[93] Design of DNA intercalators based on 4-carboranyl-1,8-naphthalimides:
investigation of their DNA binding ability and anticancer activity. (2022),
S. Rykowski, D. Gurda-Wozna, M. Orlicka-Plocka, A. Fedoruk-Wyszomirska,
M. Giel-Pietraszuk, E. Wyszko, A. Kowalczyk, P. Staczek, K. Biniek-Antosiak,
W. Rypniewski, and A.B. Olejniczak, Int. J. Mol. Sci. 23:4598
(doi: 10.3390/ijms23094598).
[92] Broken symmetry between RNA enantiomers in a crystal lattice. (2021),
A. Kiliszek, L. Blaszczyk, M. Bejger, and W. Rypniewski, Nucleic Acids Res.
49, 12535-12539 (doi: 10.1093/nar/gkab480).
[91] A computationally designed beta-amino acid-containing miniprotein. (2021),
M. Bejger, P. Fortuna, M. Drewniak-Switalska, J. Plewka, W. Rypniewski,
and L. Berlicki, Chem. Commun. 57:6015-6018 (doi: 10.1039/D1CC02192C).
[90] Molecular mechanism of thymidylate synthase inhibition by
N4-hydroxy-dCMP in view of spectrophotometric and crystallographic studies.
(2021), P. Maj, A. Jarmula, P. Wilk, M. Prokopowicz, W. Rypniewski,
Z. Zielinski, A. Dowiercial, A. Bzowska, and W. Rode, Int. J. Mol. Sci.
22:4758 (doi: 10.3390/ijms22094758).
[89] Design, synthesis, and evaluation of novel 3-carboranyl-naphthalimide
derivatives as potential anticancer agents. (2021), S. Rykowski,
D. Gurda-Wozna, M. Orlicka-Plocka, A. Fedoruk-Wyszomirska, M. Giel-Pietraszuk,
E. Wyszko, A. Kowalczyk, P. Staczek, A. Bak, A. Kiliszek, W. Rypniewski,
and A. Olejniczak, Int. J. Mol. Sci. 22:2772 (doi: 10.3390/ijms22052772).
[88] Novel Isoniazid-Carborane Hybrids Active in vitro Against
Mycobacterium tuberculosis. (2020), D. Rozycka, M. Korycka-Machala, A. Zaczek,
J. Dziadek, D. Gurda, M. Orlicka-Plocka, E. Wyszko, K. Biniek-Antosiak,
W. Rypniewski, and A.B. Olejniczak, Pharmaceuticals 13:465 (doi: 10.3390/ph13120465).
[87] The crystal structure of a Streptomyces thermoviolaceus thermophilic
chitinase known for its refolding efficiency. (2020), P.H. Malecki,
M. Bejger, W. Rypniewski, and C.E. Vorgias, Int. J. Mol. Sci. 21:2892
(doi: 10.3390/ijms21082892).
[86] Synthesis of naphthalimide-carborane and metallacarborane conjugates:
anticancer activity, DNA binding ability. (2020), J. Nekvinda, D. Rozycka,
S. Rykowski, E. Wyszko, A. Fedoruk-Wyszomirska, D. Gurda, M. Orlicka-Plocka,
M. Giel-Pietraszuk, A. Kiliszek, W. Rypniewski, R. Bachorz, J. Wojcieszak,
B. Gruner, and A. Olejniczak, Bioorganic Chem. 94:103432
(doi: 10.1016/j.bioorg.2019.103432).
[85] Structural insights into synthetic ligands targeting A-A pairs
in disease-related CAG RNA repeats. (2019), S. Mukherjee, L. Blaszczyk,
W. Rypniewski, Ch. Falschlunger, R. Micura, A. Murata, Ch. Dohno, K. Nakatani,
and A. Kiliszek, Nucleic Acids Res. 47:10906-10913 (doi: 10.1093/nar/gkz832).
[84] Spider chitin: An ultrafast microwave-assisted method for chitin
isolation from Caribena versicolor spider molt cuticle. (2019),
T. Machalowski, M. Wysokowski, M.V. Tsurkan, R. Galli, Ch. Schimpf,
D. Rafaja, E. Brendler, Ch. Viehweger, S. Zoltowska-Aksamitowska,
I. Petrenko, K. Czaczyk, M. Kraft, M. Bertau, N. Bechmann, K. Guan,
S.R. Bornstein, A. Voronkina, A. Fursov, M. Bejger, K. Biniek-Antosiak,
W. Rypniewski, M. Figlerowicz, O. Pokrovsky, T. Jesionowski, and H. Ehrlich,
Molecules 24:3736 (doi: 10.3390/molecules24203736).
[83] Plant growth promoting N-alkyltropinium bromides enhance seed germination,
biomass accumulation and photosynthesis parameters of maize (Zea mays). (2019),
A. Parus, G. Framski, W. Rypniewski, K. Panasiewicz, P. Szulc, K. Myszka,
A. Zgola-Grzeskowiak, L. Lawniczak, and L. Chrzanowski, New J. Chem. 43:5805-5812
(doi: 10.1039/C8NJ06298F).
[82] Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans
and structural insights into their properties. (2019), A. Kiliszek, W. Rypniewski,
K. Rzad, S. Milewski, and I. Gabriel, J. Struct. Biol. 205:26-33
(doi: 10.1016/j.jsb.2019.02.001).
[81] Helix-loop-helix peptide foldamers and their use in the construction
of hydrolase mimetics. (2018), M. Drewniak, E. Weglarz-Tomczak, K. Ozga,
E. Rudzinska-Szostak, K. Macegoniuk, J.M. Tomczak, M. Bejger, W. Rypniewski,
and L. Berlicki, Bioorganic Chem. 81:356-361 (doi: 10.1016/j.bioorg.2018.07.012).
[80] Crystal structures of nematode (parasitic T. spiralis and free
living C. elegans), compared to mammalian, thymidylate synthases (TS).
Molecular docking and molecular dynamics simulations in search for
nematode-specific inhibitors of TS. (2017), A. Jarmula, P. Wilk, P. Maj,
J. Ludwiczak, A. Dowiercial, K. Banaszak, W. Rypniewski, J. Ciesla,
M. Dabrowska, T. Fraczyk, A.K. Bronowska, J. Jakowiecki, S. Filipek,
and W. Rode, J. Mol. Graph. Model. 77:33-50 (doi: 10.1016/j.jmgm.2017.08.008).
[79] Stabilization of RNA hairpins using non-nucleotide linkers and
circularization. (2017), A. Kiliszek, L. Blaszczyk, R. Kierzek,
and W. Rypniewski, Nucleic Acids Res. 45:e92 (doi: 10.1093/nar/gkx122).
[78] Structures of RNA repeats associated with neurological diseases.
(2017), L. Blaszczyk, W. Rypniewski, A. Kiliszek, WIREs RNA, 8:e1412
(doi: 10.1002/wrna.1412).
[77] Mouse thymidylate synthase does not show the inactive conformation,
observed for the human enzyme. (2017), A. Dowiercial, A. Jarmula, P. Wilk,
W. Rypniewski, M. Kowalska, T. Fraczyk, J. Ciesla, and W. Rode,
Structural Chemistry, 28:667-674 (doi: 10.1007/s11224-016-0840-8).
[76] Analysis of the complete genome sequence of the archaeon Pyrococcus
chitonophagus DSM 10152 (formerly Thermococcus chitonophagus).
(2016), K. Papadimitriou, P.K. Baharidis, A. Georgoulis, M. Engel, M. Louka,
G. Karamolegkou, A. Tsoka, J. Blom, B. Pot, P. Malecki, W. Rypniewski,
H. Huber, M. Schloter, and C. Vorgias, Extremophiles, 20:351-361
(doi: 10.1007/s00792-016-0826-x).
[75] Oxyonium phosphobetaines - unusually stable nucleophilic
catalyst-phosphate complexes formed from H-phosphonates and N-oxides.
(2016), M. Materna, J. Stawinski, A. Kiliszek, W. Rypniewski,
and M. Sobkowski, RSC Advances, 6:14448-14451 (doi: 10.1039/C5RA27465F).
[74] The first crystal structures of RNA-PNA duplexes and a PNA-PNA duplex
containing mismatches - towards anti-sense therapy against TREDs. (2016),
A. Kiliszek, K. Banaszak, Z. Dauter, and W. Rypniewski, Nucleic Acids Res.
44:1937-1943 (doi:10.1093/nar/gkv1513).
[73] Watson-Crick-like pairs in CCUG repeats. Evidence for tautomeric shifts
or protonation. (2016), W. Rypniewski, K. Banaszak, T. Kulinski,
and A. Kiliszek, RNA, 22:22-31 (doi: 10.1261/rna.052399.115).
[72] The stability of the TIM-barrel domain of a psychrophilic chitinase. (2015),
P. Stavros, P.H. Malecki, M. Theodoridou, W. Rypniewski, C.E. Vorgias, and
G. Nounesis, Biochem. Biophys. Reports, 3:108-116
(doi:10.1016/j.bbrep.2015.07.016).
[71] Nucleoside bearing boron clusters and their phosphoramidites - building
blocks for modified oligonucleotide synthesis. (2015), M. Matuszewski,
A. Kiliszek, W. Rypniewski, Z.J. Lesnikowski, and A.B. Olejniczak,
New J. Chem. 39:1202-1221 (doi:10.1039/C4NJ01096E).
[70] Structural studies of CNG repeats. (2014), A. Kiliszek and W. Rypniewski,
Nucleic Acids Res. 42:8189-8199 (doi:10.1093/nar/gku536).
[69] Crystal structure of mouse thymidylate synthase in tertiary complex
with dUMP and Raltitrexed reveals N-terminus architecture and two different
active site conformations. (2014), A. Dowiercial, P. Wilk, W. Rypniewski,
W. Rode, and A. Jarmula, BioMed Res. Int., Article ID 945803
(doi:10.1155/2014/945803).
[68] Crystal structures of substrate-bound chitinase from the psychrophilic
bacterium Moritella marina and its structure in solution. (2014),
P.H. Malecki, C.E. Vorgias, M.V. Petoukhov, D.I. Svergun, and W. Rypniewski,
Acta Crystallogr. D 70:676-684 (doi:10.1107/S1399004713032264).
[67] Crystal structure of phosphoramide-phosphorylated thymidylate synthase
reveals pSer127, reflecting probably pHis to pSer phosphotransfer. (2014),
P. Wilk, A. Jarmula, T. Ruman, K. Banaszak, W. Rypniewski, J. Ciesla,
A. Dowiercial, and W. Rode, Bioorg. Chem. 52:44-49
(doi:10.1016/j.bioorg.2013.11.003).
[66] Selectivity of Ni(II) and Zn(II) binding to Sporosarcina
pasteurii UreE, a metallo-chaperone in the urease assembly:
a calorimetric and crystallographic study. (2013), B. Zambelli,
K. Banaszak, A. Merloni, A. Kiliszek, W. Rypniewski, and S. Ciurli,
J. Biol. Inorg. Chem. 18:1005-1017 (doi:10.1007/s00775-013-1049-6).
[65] Crystal structures of complexes of mouse thymidylate synthase
crystallized with N-4-OH-dCMP alone or in the presence of
N-5,N-10-methylenetetrahydrofolate. (2013), A. Dowiercial, A. Jarmula, P. Wilk,
W. Rypniewski, B. Kiedraszuk, and W. Rode, Pteridines, 24:93-98
(doi:10.1515/pterid-2013-0010).
[64] Crystal structures of thymidylate synthase from nematodes, Trichinella
spiralis and Caenorhabditis elegans, as a potential template for
species-specific drug design. (2013), A. Dowiercial, P. Wilk, W. Rypniewski,
T. Fraczyk, A. Jarmula, K. Banaszak, M. Dabrowska, J. Ciesla, and W. Rode,
Pteridines, 24:87-91 (doi:10.1515/pterid-2013-0011).
[63] Crystal structure of a complete four-domain chitinase from Moritella
marina, a marine psychrophilic bacterium. (2013), P. H. Malecki,
J. E. Raczynska, C. E. Vorgias, and W. Rypniewski, Acta Crystallogr. D,
69:821-829 (doi:10.1107/S0907444913002011).
[62] Crystallographic characterisation of CCG repeats. (2012), A. Kiliszek,
R. Kierzek, W. Krzyzosiak, and W. Rypniewski, Nucleic Acids Res. 40:8155-8162
(doi:10.1093/nar/gks557).
[61] Engineering N-(2-pyridyl)aminoethyl alcohols as potential precursors
of thermolabile protection groups. (2012), M.K. Chmielewski, E. Tykarska,
W.T. Markiewicz, and W. Rypniewski, New J. Chem. 36:603-612 (doi:10.1039/C1NJ20584F).
[60] Crystallographic and X-ray absorption spectroscopic characterization
of Helicobacter pylori UreE bound to Ni2+ and Zn2+ reveal a role
for the disordered C-terminal arm in metal trafficking. (2012), K. Banaszak,
V. Martin-Diaconescu, M. Bellucci, B. Zambelli, W. Rypniewski, M.J. Maroney,
and S. Ciurli, Biochem. J. 441:1017-1026 (doi:10.1042/BJ20111659).
[59] Binding of the plant hormone kinetin in the active site of mistletoe
lectin I from Viscum album. (2012), P.H. Malecki, W. Rypniewski, M. Szymanski,
J. Barciszewski, and A. Meyer, BBA - Proteins and Proteomics 1824:334-338
(doi:10.1016/j.bbapap.2011.10.013).
[58] Crystal structures of CGG RNA repeats with implications for fragile
X-associated tremor ataxia syndrome. (2011), A. Kiliszek, R. Kierzek,
W. Krzyzosiak, and W. Rypniewski, Nucleic Acids Res. 39:7308-7315
(doi:10.1093/nar/gkr368).
[57] The crystal structures of eukaryotic phosphofructokinases
from baker's yeast and rabbit skeletal muscle. (2011), K. Banaszak,
I. Mechin, G. Obmolova, M. Oldham, S.H. Chang, T. Ruiz, M. Radermacher,
G. Kopperschlaeger, W. Rypniewski, J. Mol. Biol. 407:284-297
(doi:10.1016/j.jmb.2011.01.019).
[56] Crystallographic analysis of a thermoactive nitrilase. (2011),
J.E. Raczynska, C.E. Vorgias, G. Antranikian and W. Rypniewski,
J. Struct. Biol. 173:294-302 (doi:10.1016/j.jsb.2010.11.017).
[55] Atomic resolution structure of CAG RNA repeats: structural insights
and implications for the trinucleotide repeat expansion diseases. (2010),
A. Kiliszek, R. Kierzek, W. Krzyzosiak, and W. Rypniewski, Nucleic Acids Res.,
38:8370-8376 (doi:10.1093/nar/gkq700).
[54] The hydration and unusual hydrogen bonding in the crystal structure
of an RNA duplex containing alternating CG base pairs. (2010), D. A. Adamiak,
J. Milecki, R. W. Adamiak, and W. Rypniewski, New J. Chem., 34:903-909
(doi:10.1039/b9nj00601j).
[53] Crystal structures of substrate- and sulfate-bound mouse thymidylate
synthase. (2009), A. Dowiercial, A. Jarmula, W. Rypniewski, M. Sokolowska,
T. Fraczyk, J. Ciesla, and W. Rode, Pteridines, 20:163-167.
[52] Structural insights into CUG repeats containing the 'stretched U-U wobble':
implications for myotonic dystrophy. (2009), A. Kiliszek, R. Kierzek,
W. Krzyzosiak, and W. Rypniewski, Nucleic Acids Res., 37:4149-4156
(doi:10.1093/nar/gkp350).
[51] Structure of mistletoe lectin I from Viscum album in complex
with the phytohormone zeatin. (2008), A. Meyer, W. Rypniewski, M.
Szymanski, W. Voelter, J. Barciszewski, and Ch. Betzel, Biochim. Biophys.
Acta, 1784:1590-1595 (doi:10.1016/j.bbapap.2008.07.010).
[50] Non-canonical G(syn)-G(anti) base pairs stabilized by
sulphate anions in two X-ray structures of the (GUGGUCUGAUGAGGCC) RNA
duplex. (2008), W. Rypniewski, D. A. Adamiak, J. Milecki, and R. W.
Adamiak, RNA, 14:1845-1851 (doi:10.1261/rna.1164308).
[49] High resolution crystal structure of Rubrivivax gelatinosus
cytochrome c'. (2008), S. Benini, W. Rypniewski, K. S. Wilson, and S.
Ciurli, J. Inorg. Biochem., 102:1322-1328
(doi:10.1016/j.jinorgbio.2008.01.017).
[48] The mistletoe lectin I - phloretamide structure reveals a new function
of plant lectins. (2007), A. Meyer, W. Rypniewski, L. Celewicz, V. A.
Erdmann, W. Voelter, T. Singh, N. Genov, J. Barciszewski, and Ch. Betzel.
Biochem. Biophys. Res. Commun., 364:195-200
(doi:10.1016/j.bbrc.2007.09.113).
[47] The crystal and solution studies of glucosamine-6-phosphate synthase
from Candida albicans. (2007), J. Raczynska, J. Olchowy, P. V.
Konariev, D. I. Svergun, S. Milewski, and W. Rypniewski, J. Mol. Biol.,
372:672-688 (doi:10.1016/j.jmb.2007.07.002).
[46] A synchrotron redetermination of 2-(morpholinium-4-yl)ethanesulfonate
monohydrate, including a disordered water molecule. (2007), M. Kubicki, D.
A. Adamiak, W. R. Rypniewski, and A. Olejniczak, Acta Crystallogr. E,
63:2604-2606 (doi:10.1107/S1600536807018685).
[45] Comparative crystallization and preliminary X-ray diffraction studies
of locked nucleic acid and RNA stems of a tenascin C-binding aptamer.
(2006), Ch. Foerster, A. B. E. Brauer, S. Brode, K. S. Schmidt, M.
Perbandt, A. Meyer, W. Rypniewski, J. Betzel, Ch. Kurreck, J. P. Fuerste,
and V. A. Erdmann, Acta Crystallogr. F, 62:665-668
(doi:10.1107/S1744309106020343).
[44] The first crystal structure of an RNA racemate. (2006), W. Rypniewski,
M. Vallazza, M. Perbandt, S. Klussmann, L. J. DeLucas, Ch. Betzel, and V.
A. Erdmann, Acta Crystallogr. D, 62:659-664
(doi:10.1107/S090744490601359X).
[43] Crystallisation and preliminary X-ray analysis of the isomerase domain
of glucosamine-6-phosphate synthase from Candida albicans. (2005),
J. Olchowy, R. Jedrzejczak, S. Milewski, and W. Rypniewski, Acta
Crystallogr. F, 61:994-996 (doi:10.1107/S174430910503318X).
[42] X-ray crystal and ab initio structures of
3',5'-di-O-acetyl-N(4)-hydroxy-2'-deoxycytidine and its 5-fluoro analogue:
models of the N(4)-OH-dCMP and N(4)-OH-FdCMP molecules interacting with
thymidylate synthase. (2005), A. Jarmula, W. R. Rypniewski, K. Felczak, and
W. Rode, Structural Chemistry, 16:541-549.
[41] Synthetic human prion protein octapeptide repeat binds to the
proteinase K active site. (2004), D. N. Georgieva, W. R. Rypniewski, H.
Echner, M. Perbandt, M. Koker, J. Clos, L. Redecke, R. Bredehorst, W.
Voelter, N. Genov, and Ch. Betzel, Biochem. Biophys. Res. Commun.,
325:1406-1411.
[40] Structure of the reduced disulpfide-bond isomerase DsbC from
Escherichia coli. (2004), K. Banaszak, I. Mechin, G. Frost, and W.
R. Rypniewski, Acta Crystallogr. D, 60:1747-1752.
[39] Asp49 phospholipase A2-elaidoylamide complex: a new mode of
inhibition. (2004), D. N. Georgieva, W. R. Rypniewski, A. Gabdoulkhakov, N.
Genov, and Ch. Betzel, Biochem. Biophys. Res. Commun., 319:1314-1321.
[38] Molecular details of urease inhibition by boric acid: Insights into
the catalytic mechanism. (2004), S. Benini, W. R. Rypniewski, K. S. Wilson,
S. Mangani, and S. Ciurli, J. Am. Chem. Soc., 126:3714-3715.
[37] The X-ray structure of a snake venom Gln48 phospholipase A2 at 1.9 A
resolution reveals anion-binding sites. (2004), D. N. Georgieva, M.
Perbandt, W. Rypniewski, K. Hristov, N. Genov, and Ch. Betzel, Biochem.
Biophys. Res. Commun., 316:33-38.
[36] First look at RNA in L-configuration. (2004), M. Vallazza, M.
Perbandt, S. Klussmann, W. Rypniewski, H. M. Einspahr, V. A. Erdmann, and
Ch. Betzel, Acta Crystallogr. D, 60:1-7.
[35] Trypsin revisited: Crystallography at (sub)atomic resolution and
quantum chemistry revealing details of catalysis. (2003), A. Schmidt, Ch.
Jelsch, P. Oestergaard, W. R. Rypniewski, and V. S. Lamzin, J. Biol. Chem.,
278:43357-43362.
[34] The 10.8 A structure of Saccharomyces cerevisiae
phosphofructokinase determined by cryo-electron microscopy: localization of
the putative fructose 6-phosphate binding sites. (2003), T. Ruiz, I.
Mechin, J. Baer, W. R. Rypniewski, G. Kopperschlaeger, and M. Radermacher.
J. Struct. Biol., 143:124-134.
[33] Crystallization and preliminary X-ray diffraction studies of a toxic
phospholipase A2 from the venom of Vipera ammodytes meridionalis
complexed to a synthetic inhibitor. (2003) D. N. Georgieva, W. R.
Rypniewski, M. Perbandt, M. Jain, N. Genov, and Ch. Betzel, Biochim.
Biophys. Acta, 1650:1-3.
[32] The structure of a functional unit from the wall of a gastropod
hemocyanin offers a possible mechanism for cooperativity. (2003), M.
Perbandt, E. W. Guthoehrlein, W. R. Rypniewski, K. Idakieva, S. Stoeva, W.
Voelter, N. Genov, and Ch. Betzel, Biochemistry, 42:6341-6346.
[31] High resolution X-ray structure of the hyperthermophilic DNA-binding
protein HU from Thermatoga maritima and the determinants of its
thermostability. (2003), E. Christodoulou, W. R. Rypniewski, and C. E.
Vorgias, Extremophiles, 7:111-122.
[30] Crystallisation under microgravity of mistletoe lectin I from
Viscum album with adenine monophosphate and the crystal structure at
1.9 A resolution. (2002), R. Krauspenhaar, W. Rypniewski, N. Kalkura, K.
Moore, L. DeLucas, St. Stoeva, A. Mikhailov, W. Voelter, and Ch. Betzel,
Acta Crystallogr. D, 58:1704-1707.
[29] Structure-based rationalisation of urease inhibition by phosphate:
Novel insights into the enzyme mechanism. (2001), S. Benini, W. R.
Rypniewski, K. S. Wilson, S. Ciurli, and S. Mangani, J. Biol. Inorg. Chem.,
6:778-790.
[28] Preliminary X-ray diffraction studies of the external functional unit
RtH2-e from the Rapana thomasianahemocyanin. (2001), M. Perbandt, V.
Chandra, K. R. Rajashankar, K. Idakieva, K. Parvanova, W. Rypniewski, S.
Stoeva, W. Voelter, N. Genov, and Ch. Betzel, Acta Crystallogr. D,
57:1663-1665.
[27] Crystallization, preliminary X-ray analysis and amino acid sequence
studies of an "external" functional unit from the Rapana thomasiana
grosse (mollusc, gastropod) hemocyanin. (2001), M. Perbandt, V.
Chandra, K. Idakieva, K. Parvanova, W. Rypniewski, S. Stoeva, W. Voelter,
N. Genov, and Ch. Betzel, J. Cryst. Growth, 232:353-360.
[26] 1.9 A X-ray structure of 2'-OMe(CGCGCG)2 duplex shows dehydrated RNA
with 2-methyl-2,4-pentanediol in the minor groove. (2001), D. A. Adamiak,
W. R. Rypniewski, J. Milecki, and R. W. Adamiak, Nucleic Acids Res.,
29:4144-4153.
[25] Fusarium oxysporumtrypsin at atomic resolution, at 100K and
283K. A study of ligand binding. (2001), W. R. Rypniewski, P. Oestergaard,
M. Noerregaard-Madsen, M. Dauter, and K. S. Wilson, Acta Crystallogr. D,
57:8-19.
[24] Crystals structure of oxidised Bacillus pasteurii cytochrome
c-553 at 0.97 A resolution. (2000), S. Benini, A. Gonzalez, W. R.
Rypniewski, K. S. Wilson, J. J. van Beeumen, and S. Ciurli, Biochemistry,
39:13115-13126.
[23] The complex of Bacillus pasteurii urease with acetohydroxamate
anion from X-ray data at 1.55 A resolution. (2000), S. Benini, W. R.
Rypniewski, K. S. Wilson, S. Miletti, S. Ciurli, and S. Mangani, J. Biol.
Inorg. Chem., 5:110-118.
[22] Structural properties of the nickel ions in urease: Novel insights
into the catalytic and inhibition mechanisms. (1999), S. Ciurli, S. Benini,
W. R. Rypniewski, K. S. Wilson, S. Miletti, and S. Mangani, Coord. Chem.
Rev., 190:331-355.
[21] The crystal structure of the monomeric human SOD mutant
F50E/G51E/E133Q at atomic resolution. The enzyme mechanism revisited.
(1999), M. Ferraroni, W. R. Rypniewski, K. S. Wilson, M. S. Viezzoli, L.
Banci, I. Bertini, and S. Mangani, J. Mol. Biol., 288:413-426.
[20] A new proposal for urease mechanism based on the crystal structures of
the native and inhibited enzyme from Bacillus pasteurii: why urea
hydrolysis costs two nickels. (1999), S. Benini, W. R. Rypniewski, K. S.
Wilson, S. Miletti, S. Ciurli, and S. Mangani, Structure, 7:205-216.
[19] High resolution native and complex structure of thermostable
beta-mannanase from Thermomonospora fusca - substrate specificity in
glycosyl hydrolase family 5. (1998), M. Hilge, S. M. Gloor, W. Rypniewski,
O. Sauer, T. D. Heightman, W. Zimmermann, K. Winterhalter, and K. Piontek,
Structure, 6:1433-1444.
[18] Crystallographic determination of reduced bovine superoxide dismutase
at pH 5.0 and of anion binding to its active site. (1998), M. Ferraroni, W.
R. Rypniewski, B. Bruni, P. Orioli, and S. Mangani, J. Biol. Inorg. Chem.,
3:411-422.
[17] The complex of Bacillus pasteurii urease with beta-mercaptoethanol
from X-ray data at 1.65 A resolution. (1998), S. Benini, W. R. Rypniewski,
K. S. Wilson, S. Ciurli, and S. Mangani, J. Biol. Inorg. Chem., 3:268-273.
[16] Crystallization and preliminary high resolution X-ray diffraction
analysis of native and beta-mercaptoethanol-inhibited urease from
Bacillus pasteurii. (1998), S. Benini, S. Ciurli, W. R. Rypniewski,
K. S. Wilson, and S. Mangani, Acta Crystallogr., D54:409-412.
[15] Studies on synthesis and structure of
O-b-D-ribofuranosyl(1''-2')ribonucleosides and oligonucleotides. (1998), W.
T. Markiewicz, A. Niewczyk, Z. Gdaniec, D. A. Adamiak, Z. Dauter, W.
Rypniewski, and M. Chmielewski, Nucleosides and Nucleotides,
17(1-3):411-424.
[14] Crystallizaton and preliminary X-ray diffration analysis of cytochrome
c' from Rubrivivax gelatinosus at 1.3 A resolution. (1998), S.
Benini, W. R. Rypniewski, K. S. Wilson, and S. Ciurli, Acta Crystallogr.,
D54:284-287.
[13] Crystallisation and preliminary X-ray analysis of the 12S form of
phosphofructokinase from Saccharomyces cerevisiae. (1998), G.
Obmolova, G. Kopperschlaeger, J. Heinisch, and W. R. Rypniewski, Acta
Crystallogr., D54:96-98.
[12] Crystal structure of the 2'-OMe(CGCGCG)2, an RNA duplex at 1.3 A
resolution. Hydration pattern of the 2'-O-methylated RNA. (1997), D. A.
Adamiak, J. Milecki, M. Popenda, R. W. Adamiak, Z. Dauter, and W. R.
Rypniewski, Nucleic Acids Res., 25(22):4599-4607.
[11] Crystals of cytochrome c-553 from Bacillus pasteurii show
diffraction to 0.97 A resolution. (1997), S. Benini, S. Ciurli, W. R.
Rypniewski, and K. S. Wilson, Proteins: Structure, Function and Genetics,
28:580-585.
[10] Crystal structure of reduced bovine erythrocyte superoxide dismutase
at 1.9 A resolution. (1995), W. R. Rypniewski, S. Mangani, B. Bruni, P. L.
Orioli, M. Casati, and K. S. Wilson, J. Mol. Biol., 251:282-296.
[9] Structure of inhibited trypsin from Fusarium oxysporum at 1.55
A. (1995), W. R. Rypniewski, C. Dambmann, C. von der Osten, M. Dauter, and
K. S. Wilson. Acta Crystallogr., D51:73-84.
[8] X-ray, NMR and molecular dynamics studies on reduced bovine superoxide
dismutase: implications for the mechanism. (1994), L. Banci, I. Bertini, B.
Bruni, P. Carloni, C. Luchinat, S. Mangani, P. L. Orioli, M. Piccioli, W.
R. Rypniewski, and K. S. Wilson, Biochem. Biophys. Res. Commun.,
202:1088-1095.
[7] Evolutionary divergence and conservation of trypsin. (1994), W. R.
Rypniewski, A. Perrakis, C. E. Vorgias, and K. S. Wilson, Protein Engng.,
7:57-64.
[6] Structural consequences of reductive methylation of lysine residues in
hen egg while lysozyme: an X-ray analysis at 1.8 A resolution. (1993), W.
R. Rypniewski, H. M. Holden, and I. Rayment, Biochemistry, 32:9851-9858.
[5] Three-dimensional structure of myosin subfragment-1: a molecular motor.
(1993), I. Rayment, W. R. Rypniewski, K. Schmidt-Baese, R. Smith, D. R.
Tomchick, M. M. Benning, D. W. Winklemann, G. Wesenberg, and H. M. Holden,
Science, 261:50-58.
[4] The sequence and X-ray structure of the trypsin from Fusarium
oxysporum. (1993), W. R. Rypniewski, S. Hastrup, Ch. Betzel, M. Dauter,
Z. Dauter, G. Papendorf, S. Branner, and K. S. Wilson, Protein Engng.,
6:341-348.
[3] Crystallization and structure determination to 2.5 A resolution of the
oxidized (2Fe-2S) ferredoxin isolated from Anabaena 7120. (1991), W.
R. Rypniewski, D. R. Breiter, M. M. Benning, G. Wesenberg, Byung-Ha Oh, J.
L. Markley, I. Rayment, and H. M. Holden, Biochemistry, 30:4126-4131.
[2] The structure of unliganded E. coli phosphofructokinase at 2.4 A
resolution. (1989), W. R. Rypniewski and P. R. Evans. J. Mol. Biol.,
207:805-821.
[1] The molecular structure of insecticyanin from the tobacco hornworm
Manduca sexta L. at 2.6 A resolution. (1987), H. M. Holden, W. R.
Rypniewski, J. H. Law, and I. Rayment, The EMBO Journal, 6:1565-1570.
Publikacje w jezyku polskm[4] Superbialka jak "superbakterie"? (2024), W. Rypniewski, Forum Akademickie 7-8:40-43.![]()
[3] Wychodzimy z kompleksow. (2021), W. Rypniewski, Forum Akademickie
9:26-29.
[2] Struktura z patogeneza chorob zwiazanych z ekspansja powtorzen CNG.
(2014), A. Kiliszek, and W. Rypniewski, Wiadomosci Chemiczne 68:563-585.
[1] Koncepcja budowy linii pomiarowej MX/SAXS/XRD w NCPS SOLARIS (2012),
M. Kozak, W. Rypniewski, and M. Jaskolski, Synchrotron Radiation
in Natural Science. 11:5-9.
|