Poisson's ratio of rectangular anti-chiral lattices with disorder

Artur A. Poźniak¹ Krzysztof W. Wojciechowski²

¹Institute of Physics, Poznań Universty of Technology, ul. Nieszawska 13A, 60-695 Poznań, ²Institute of Molecular Physics PAS, ul. M. Smoluchowskiego 17, 60-179 Poznań

 $17^{\rm th}$ September 2014

AUXETICS 2014

Instead of the outline

Instead of the outline

Instead of the outline

Motivation

What is an **auxetic**?

 $\nu < 0$ (Negtative Poisson's Ratio) is for mechanics what negative refractive index is for optics n < 0. Auxetics are metamaterials.

Beneficial features from NPR

Resistance to shape change and indentation; crack resistance; better vibration absorption (including acoustic one); synclastic curvature, different dynamics.

Applications of NPR materials

Medicine (stents, bandages, implants), defence (energy absorption), furniture industry (better mattresses \rightarrow indentation), automotive industry and sports (safety belts).

Poisson's ratio (stretching along x axis)

FIG. 3. Example "a": Optimal microstructure (one unit cell) for maximization of the piezoelectric charge coefficient $d_h^{(e)}$.

FIG. 4. Schematic representation of an equivalent two-dimensional composite that yields the (vertical) negative Poisson's ratio behavior of example "a" (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3 plane) view. When the microstructures are compressed horizontally (solid arrows), they contract vertically (dashed arrows).

Source: On the design of 1-3 piezocomposites using topology optimization, O. Sigmund, S. Torquato, I.A. Aksay, Journal of Materials Research **13**, 4, 1040-1048 (1998)

Source: Hydrophone. (2014, February 28). In Wikipedia, The Free Encyclopedia. Retrieved 10:37, April 9, 2014

FIG. 3. Example "a": Optimal microstructure (one unit cell) for maximization of the piezoelectric charge coefficient $d_h^{(*)}$.

FIG. 4. Schematic representation of an equivalent two-dimensional composite that yields the (vertical) negative Poisson's ratio behavior of example "a" (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3 plane) view. When the microstructures are compressed horizontally (solid arrows), they contract vertically (dashed arrows).

Source: On the design of 1-3 piezocomposites using topology optimization, O. Sigmund, S. Torquato, I.A. Aksay, Journal of Materials Research **13**, 4, 1040-1048 (1998)

The first article describing anti-chiral structures as NPR material. Cross sections \rightarrow different mechanisms.

Experimental setup

Source: *Elasticity of anti-tetrachiral anisotropic lattices*, Y.J. Chen et al., International Journal of Solids and Structures **50**, 996-1004 (2013)

Source: Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process, P. Bettini et al., Compisites: Part B **41**, 2, 133-147 (2010)

A.A. Poźniak, K.W. Wojciechowski

 L_y is a unit length. $L_x/L_y \equiv l_y$, $T/L_y \equiv t$; taking $L_y = 1$ $l_x = L_x$ being the anisotropy parameter.

Finite Element Method

- Approximate method for solving PDEs.
- Physical discretization.
- Various shape functions available.
- A system of PDEs \rightarrow very large system of algebraic equations.
- Arbitrary precision depending on t and computational resources (\$).
- Variety of libraries (C++, Python) and proprietary software. Here Abaqus/STANDARD was employed (linear static elasticity).

Finite Element Method

- Approximate method for solving PDEs.
- Physical discretization.
- Various shape functions available.
- A system of PDEs \rightarrow very large system of algebraic equations.
- Arbitrary precision depending on t and computational resources (\$).
- Variety of libraries (C++, Python) and proprietary software. Here Abaqus/STANDARD was employed (linear static elasticity).

Timoshenko beam-type element(B21)

Boundary conditions

 U_x is a placement-type, orange "x" – zero stress condition PBC – easier for B21, CPS3 elems. require more equations – no rotational DOFs

A.A. Poźniak, K.W. Wojciechowski

 ν of disordered anti-chirals

Convergence as a function of the mesh element size CPS3

Figure: $l_x \equiv L_x/L_y = 1.0$

Filled symbol denotes mesh size chosen for further calculations corresponding to $n_x = 9$. The figure on the right shows the case for $n_x = 7$ for clarity reasons.

Convergence as a function of the mesh element size B21

Figure: Mesh for $d_m = 0.01$ (t = 0.1)

Figure: $l_x \equiv L_x/L_y = 1.0$

Filled symbol denotes mesh size chosen for further calculations corresponding to $d_m = 0.01$.

Convergence as a function of the size of the sample

Figure: Averaged ν_{xy} for samples of size 1×1 to 16×16 of elementary units. The anisotropy parameter $l_x = 1$, r = 0.3 with $\delta = 0.19$ (almost maximal possible disorder). 5 samples for each average

(b)
$$n_x = 16$$

Figure: The influence of rib's thickness on the Poiison's ratio for 2 radii of RC: r=0.15 (a) and r=0.4 (b)

- CPS3 planar elements,
- B21 elastic RC Timoshenko beams with deformable RCs,
- B21 rigid RC Timoshenko beams with rigid RCs,

Poisson's ratio as a function of the anisotropy

Poisson's ratio as a function of the anisotropy

(a) Reference state

(b) Sample stretched along the X axis

Figure:
$$l_x = 4$$
, $\nu \approx -4 \ll -1$

Positional disorder – introduction

Positional disorder – introduction

Positional disorder - introduction

Technical issues

- Periodic mesh!
- Generation of the mesh when $l_x \gg 1$ in the case of planar elements(CPS3) requires an introduction of "artificial" cuts. This is time-consuming.

	l_x n_x	1	2	4	8	16	
*.inp preparation time [min]	1	0.072	0.323	2.023	10.823	57.437	-
	4	0.092	0.453	2.862	15.578	87.122	
	16	0.185	0.918	5.815	36.013	202.064	
required memory [MB]	1	205	748	2910	11534	43459	
	4	432	1627	6372	25272	97078	1
	16	1 3 4 1	5162	20284	78541	305234	
solving time [min]	1	0.163	0.638	3.506	15.099	68.114	
	4	0.359	1.512	7.950	36.355	171.242	-
	16	1.568	6.368	28.250	118.200	501.749	•

	l_x n_x	1	2	4	8	16
*.inp preparation time [min]	1	0.023	0.035	0.143	2.122	63.157
	4	0.027	0.037	0.148	2.160	63.257
	16	0.025	0.035	0.155	2.195	63.578
required memory [MB]	1	26	37	84	281	1 078
	4	30	54	157	581	2283
	16	48	127	459	1 787	7109
solving time [min]	1	0.005	0.011	0.036	0.181	0.770
	4	0.007	0.020	0.075	0.364	1.691
	16	0.016	0.059	0.230	1.300	5.809

B21

	l_x n_x	n_x			2		4		8		16	
	1	0.	072	0.	$0.323 \\ 0.453$		2.023	10.823 15.578		57.	437	
*.inp preparation time [min]	4	0.	092	0.			2.862			87.122	122	
	16	0.	0.185		918	5.815		36.013		202.064		
	1	. 205		748			2 9 1 0	11	534	43	459	
required memory [MB]	4		432	1	627		6 372	25	272	97	078	in
	16	1	341	5	162	20	0 284	78	541	305	234	
	1	1 0.		0.	638	3	3.506	15.	.099	68.	114	
solving time [min]	4	0.	359	1.	512	7	7.950	36.	.355	171.	242	
	16	1.568		6.	368	28	8.250	118.200		501.749		
	l_x	l_x n_x				2 4			8			Ĭ
		1	1 0.02		0.035		0.143	2.	122	63.1		
*.inp preparation time [mi	n]	4	0.027		0.037		0.148	8 2.160		63.2	57	
	1	16	0.025		0.03	35	0.155	155 2.19		63.5'	78	_
required memory [MB]		1	L 26		37		84		281	10'	78	ω
		4	4 3		5	54	157		581	2 28	33	N
		16	4	18	12	27	459	1	787	710)9	1
		1	0.00)5	0.011		0.036	0.	181	0.7	70	
solving time [min]		4	0.00)7	0.02	20	0.075	0.	364	1.69	1.691	
	1	16	0.016		0.05	59	0.230	1.	300	5.809		

	l_x n_x		1	2		4	8	16	_
	1	0.0	72 0.	323	2	2.023	10.823	57.437	_
*.inp preparation time [min]		0.09	92 0.	0.453		2.862	15.578	87.122	_
	16	0.18	85 0.	0.918		5.815	36.013	202.064	
	1	20	05	748	1	2910	11534	43459	τ
required memory [MB]	4	43	32 1	627	(3 372	25272	97 078	Ū
	16	13_{4}	41 5	162	20 284		78541	305 234	۲.
	1	0.16	63 0.	638	3.506		15.099	68.114	
solving time [min]	4	0.3	59 1.	512	7	7.950	36.355	171.242	_
	16 1.568		68 6.	368	28.250		118.200	501.749	_
	l_x	n_x	1		2	4	8		
		1	0.023	0.03	35	0.143	2.122	63.1	
*.inp preparation time [mi	n]	4	0.027	0.03	0.148		2.160	63.257	
	1	16	0.025	0.03	35 0.155		2.195	63.578	
required memory [MB]		1	26		37	84	281	1 078	
		4	30	Ę	54	157	581	2283	
		L6	48	11	27	459	1 787	7 109	
solving time [min]		1	0.005	0.0	11	0.036	0.181	0.770	
		4	0.007	0.05	20	0.075	0.364	1.691	
]	16	0.016	0.0	59	0.230	1.300	5.809	

	l_x n_x		1		2		4		8		16	
	1	0.	072	0.	.323		2.023	1	0.823	57.4	437	
*.inp preparation time [min]	4	0.	0.092		453	2	2.862		15.578	87.	122	
	16	16 0.1		0.918		5.815		36.013		202.064		
	1		205		748		2910	1	1534	43	459	T
required memory [MB]	4		432	1	627	(5372	4	25272	97 (078	Ň
	16	1	341	5 162		20 284		- 7	78541	305 1	234	7.5
	1	0.	163	0.638		3.506		1	5.099	68.	114	W
solving time [min]	4	0.	359	1.	512	7	7.950	3	6.355	171.5	242	
	16	1.	568	6.368		28.250		11	8.200	501.	749	
											$\overline{\cap}$	
	l_x	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		2		4	Ł	8		U	ΛU
		1 0.0		23	23 0.03		35 0.143		2.122			
*.inp preparation time [mi	n]	4	0.027		0.037		0.148		2.160	63.25	7	
	1	16	0.025		0.035		5 0.155		.155 2.195		8	_
required memory [MB]		1	1 2		26 3		37 84		84 281		8	υ
		4	30		54		157	157 581		2 28	3	N
		6	4	18	12	27	459	459 178		7109		1
solving time [min]		1	0.00)5	0.011		0.036	3 0.181		0.77	0	÷
		4	0.00)7	0.02	20	0.075	5	0.364	1.69	1	
]	6	0.0	16	0.0	59 0.23		1.300		5.809		

Conclusions

- Changing the anisotropy parameter (l_x) one can tune ν .
- ν can reach any negative value.
- For thin ribs the Timoshenko beam elements approximation gives satisfactory convergence.
- The disorder introduced by random RC radii has a negligible impact on ν .
- Anti-chiral structures with rectangual symmetry are effective strain amplifiers with $\nu \ll -1$.
- Thiner ribs give lower ν but the effective structure's stiffness is also decreased.

This work was supported by the (Polish) National Centre for Science under the grant NCN 2012/05/N/ST5/01476. Part of the simulations was performed at the Poznań Supercomputing and Networking Center (PCSS).

Special thanks to prof. K.W. Wojciechowski

Conclusions

- Changing the anisotropy parameter (l_x) one can tune ν .
- ν can reach any negative value.
- For thin ribs the Timoshenko beam elements approximation gives satisfactory convergence.
- The disorder introduced by random RC radii has a negligible impact on ν .
- Anti-chiral structures with rectangual symmetry are effective strain amplifiers with $\nu \ll -1$.
- Thiner ribs give lower ν but the effective structure's stiffness is also decreased.

This work was supported by the (Polish) National Centre for Science under the grant NCN 2012/05/N/ST5/01476. Part of the simulations was performed at the Poznań Supercomputing and Networking Center (PCSS).

Special thanks to prof. K.W. Wojciechowski

Conclusions

- Changing the anisotropy parameter (l_x) one can tune ν .
- ν can reach any negative value.
- For thin ribs the Timoshenko beam elements approximation gives satisfactory convergence.
- The disorder introduced by random RC radii has a negligible impact on ν .
- Anti-chiral structures with rectangual symmetry are effective strain amplifiers with $\nu \ll -1$.
- Thiner ribs give lower ν but the effective structure's stiffness is also decreased.

This work was supported by the (Polish) National Centre for Science under the grant NCN 2012/05/N/ST5/01476. Part of the simulations was performed at the Poznań Supercomputing and Networking Center (PCSS).

Special thanks to prof. K.W. Wojciechowski

Daily inspirations – melting snow is reentrant

© Prof. K.W. Wojciechowski

Daily inspirations – melting snow is reentrant

© Prof. K.W. Wojciechowski

Thank you