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Motivation

What is an auxetic?

v < 0 (Negtative Poisson's Ratio) is for mechanics what negative
refractive index is for optics n < 0.
Auxetics are metamaterials.

Beneficial features from NPR

Resistance to shape change and indentation; crack resistance; better
vibration absorption (including acoustic one); synclastic curvature,
different dynamics.

Applications of NPR materials

Medicine (stents, bandages, implants), defence (energy absorption),
furniture industry (better mattresses — indentation), automotive industry
and sports (safety belts).
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Poisson’s ratio
(stretching along z axis)
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FIG. 4. Schematic representation of an equivalent two-dimensional
composite that yields the (vertical) negative Poisson’s ratio behavior
of example “a” (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3
plane) view. When the microstructures are compressed horizontally
(solid arrows), they contract vertically (dashed arrows).

Source: On the design of 1-3 piezocomposites using topology optimization, O. Sigmund,
S. Torquato, |.A. Aksay, Journal of Materials Research 13, 4, 1040-1048 (1998)

FIG. 3. Example “a”: Optimal microstructure (one unit cell) for
maximization of the piezoelectric charge coefficient d,(,*'.

Source: Hydrophone. (2014, February 28).
In Wikipedia, The Free Encyclopedia. Re-
trieved 10:37, April 9, 2014
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FIG. 4. Schematic representation of an equivalent two-dimensional
composite that yields the (vertical) negative Poisson’s ratio behavior
of example “a” (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3
plane) view. When the microstructures are compressed horizontally
(solid arrows), they contract vertically (dashed arrows).

FIG. 3. Example “a”: Optimal microstructure (one unit cell) for
maximization of the piezoelectric charge coefficient d,(,*'.

Source: On the design of 1-3 piezocomposites using topology optimization, Q. Sigmund,
S. Torquato, |.A. Aksay, Journal of Materials Research 13, 4, 1040-1048 (1998)

The first article describing anti-chiral structures as NPR
material. Cross sections — different mechanisms.
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Experimental setup

Fig. 4. Honeycomb structures experimental setup: (a) flatwise compression tests; (b) three-point bending tests; (c) and (d) tensile tests.

Source: Elasticity of anti-tetrachiral anisotropic lattices, Y.J. Chen et al.,
International Journal of Solids and Structures 50, 996-1004 (2013)
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Aluminum 6061 TOS1
Soft Material

Aluminum 6061 T051  Composite Material

Fig. 2. Chiral core airfoil,
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Fig. 5. Axial stress distribution (100 MPa) at the limit of the elastic regime of the
material for aluminum alloy airfoil: (a) 2-cell configuration, (b) 3 cells, and (c) 4
cells.

Source: Composite chiral structures for morphing airfoils: Numerical analyses and
development of a manufacturing process, P. Bettini et al., Compisites: Part B 41, 2,
133-147 (2010)
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Geometry
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Finite Element Method
@ Approximate method for solving PDEs.

Physical discretization.
Various shape functions available.
A system of PDEs — very large system of algebraic equations.

Arbitrary precision depending on ¢ and computational resources ($).

Variety of libraries (C++, Python) and proprietary software. Here
Abaqus/STANDARD was employed (linear static elasticity).
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planar elements (CPS3) Timoshenko beam-type element(B21)
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Boundary conditions
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Convergence as a function of the mesh element size
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Figure: l; = Ly/L, = 1.0
Filled symbol denotes mesh size
chosen for further calculations
corresponding to n, = 9. _
The figure on the right shows the case for u
n, = 7 for clarity reasons. Figure: Mesh for n,, =7 (¢t = 0.1)
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Convergence as a function of the size of the sample
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Figure: Averaged v,y for samples of size 1 X 1 to 16 x 16
of elementary units. The anisotropy parameter I, = 1,

r = 0.3 with § = 0.19 (almost maximal possible disorder).
5 samples for each average

(b) n, =16
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Figure: The influmence of rib’s thickness on the Poiison’s ratio for 2 radii of RC: r = 0.15 (a)
and r = 0.4 (b)

@ CPS3 — planar elements,
@ B21 elastic RC — Timoshenko beams with deformable RCs,
@ B21 rigid RC — Timoshenko beams with rigid RCs,
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Poisson's ratio as a function of the anisotropy
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(a) Reference state (b) Sample stretched along the X axis
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Technical issues

@ Periodic mesh!

@ Generation of the mesh when
I > 1 in the case of planar
elements(CPS3) requires an
introduction of “artificial” cuts.
This is time-consuming.
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Conclusions
e Changing the anisotropy parameter (l;) one can tune v.
@ v can reach any negative value.

@ For thin ribs the Timoshenko beam elements approximation gives
satisfactory convergence.

@ The disorder introduced by random RC radii has a negligible impact
on v in the case of thin ribs, however, for thick ribs the impact is
noticeable.

@ Anti——chiral structures with rectangual symmetry are effective
strain amplifiers with v <« —1.

@ Thiner ribs give lower v but the effective structure'’s stiffness is also
decreased.
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This work was supported by the (Polish) National Centre for Science under the grant
NCN 2012/05/N/ST5/01476. Part of the simulations was performed at the Poznan
Supercomputing and Networking Center (PCSS).
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Thank you
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