Poisson's ratio of randomly disordered anti-chiral structures with variable anisotropy

Artur A. Poźniak¹ Krzysztof W. Wojciechowski²

¹Institute of Physics, Poznań Universty of Technology, ul. Nieszawska 13A, 60-695 Poznań, ²Institute of Molecular Physics PAS, ul. M. Smoluchowskiego 17, 60-179 Poznań

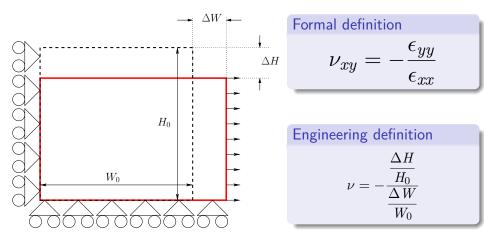
 $6^{\rm th}$ May 2014

TRECOP 2014

Motivation

What is an auxetic?

 $\nu < 0$ (Negtative Poisson's Ratio) is for mechanics what negative refractive index is for optics n < 0. Auxetics are metamaterials.


Beneficial features from NPR

Resistance to shape change and indentation; crack resistance; better vibration absorption (including acoustic one); synclastic curvature, different dynamics.

Applications of NPR materials

Medicine (stents, bandages, implants), defence (energy absorption), furniture industry (better mattresses \rightarrow indentation), automotive industry and sports (safety belts).

Poisson's ratio (stretching along x axis)

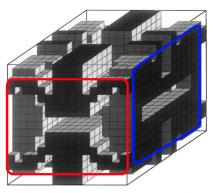


FIG. 3. Example "a": Optimal microstructure (one unit cell) for maximization of the piezoelectric charge coefficient $d_h^{(e)}$.

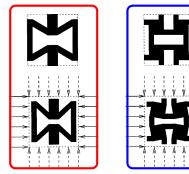


FIG. 4. Schematic representation of an equivalent two-dimensional composite that yields the (vertical) negative Poisson's ratio behavior of example "a" (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3 plane) view. When the microstructures are compressed horizontally (solid arrows), they contract vertically (dashed arrows).

Source: On the design of 1-3 piezocomposites using topology optimization, O. Sigmund, S. Torquato, I.A. Aksay, Journal of Materials Research **13**, 4, 1040-1048 (1998)

Source: Hydrophone. (2014, February 28). In Wikipedia, The Free Encyclopedia. Retrieved 10:37, April 9, 2014

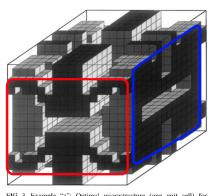


FIG. 3. Example "a": Optimal microstructure (one unit cell) for maximization of the piezoelectric charge coefficient $d_h^{(*)}$.

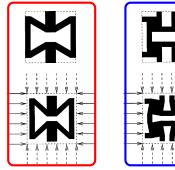
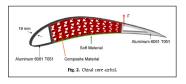
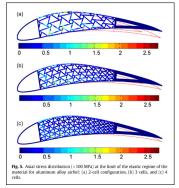
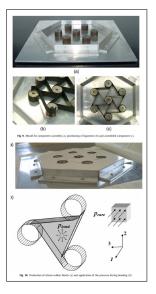


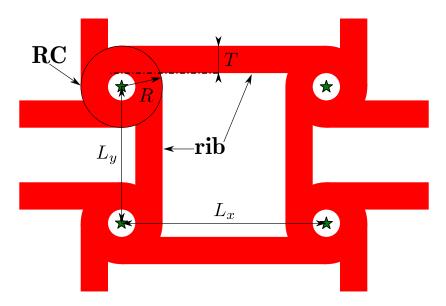
FIG. 4. Schematic representation of an equivalent two-dimensional composite that yields the (vertical) negative Poisson's ratio behavior of example "a" (Fig. 5). Left: front (1-3 plane) view, Right: side (2-3 plane) view. When the microstructures are compressed horizontally (solid arrows), they contract vertically (dashed arrows).


Source: On the design of 1-3 piezocomposites using topology optimization, O. Sigmund, S. Torquato, I.A. Aksay, Journal of Materials Research **13**, 4, 1040-1048 (1998)


The first article describing anti-chiral structures as NPR material. Cross sections \rightarrow different mechanisms.


Experimental setup

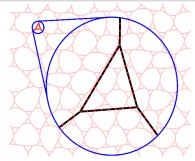
Source: *Elasticity of anti-tetrachiral anisotropic lattices*, Y.J. Chen et al., International Journal of Solids and Structures **50**, 996-1004 (2013)



Source: Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process, P. Bettini et al., Compisites: Part B **41**, 2, 133-147 (2010)

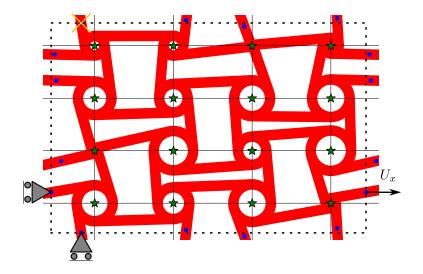
A.A. Poźniak, K.W. Wojciechowski

Geometry


Finite Element Method

- Approximate method for solving PDEs.
- Physical discretization.
- Various shape functions available.
- A system of PDEs \rightarrow very large system of algebraic equations.
- Arbitrary precision depending on t and computational resources (\$).
- Variety of libraries (C++, Python) and proprietary software. Here Abaqus/STANDARD was employed (linear static elasticity).

Finite Element Method


- Approximate method for solving PDEs.
- Physical discretization.
- Various shape functions available.
- A system of PDEs \rightarrow very large system of algebraic equations.
- Arbitrary precision depending on t and computational resources (\$).
- Variety of libraries (C++, Python) and proprietary software. Here Abaqus/STANDARD was employed (linear static elasticity).

Timoshenko beam-type element(B21)

Boundary conditions

Convergence as a function of the mesh element size

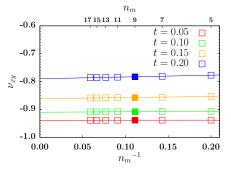
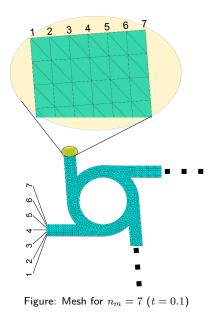



Figure: $l_x \equiv L_x/L_y = 1.0$

Filled symbol denotes mesh size chosen for further calculations corresponding to $n_x = 9$. The figure on the right shows the case for $n_x = 7$ for clarity reasons.

Convergence as a function of the size of the sample

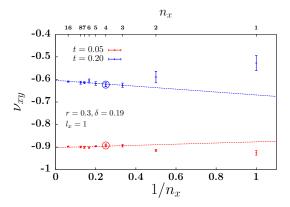
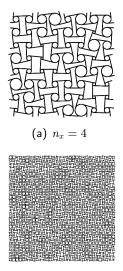
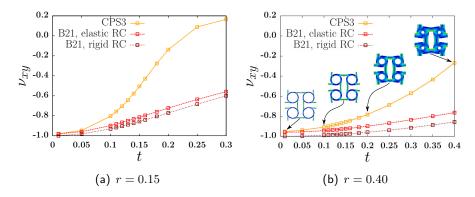
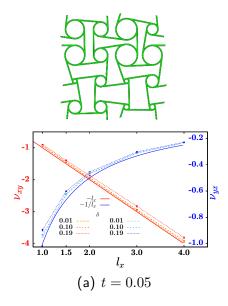
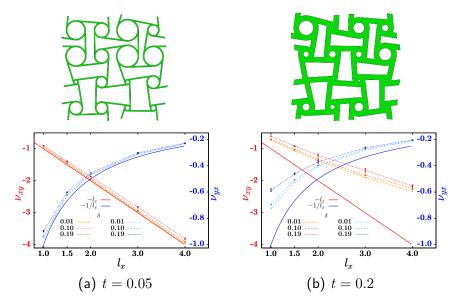
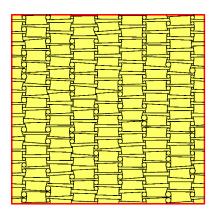



Figure: Averaged ν_{xy} for samples of size 1×1 to 16×16 of elementary units. The anisotropy parameter $l_x=1,$ r=0.3 with $\delta=0.19$ (almost maximal possible disorder). 5 samples for each average

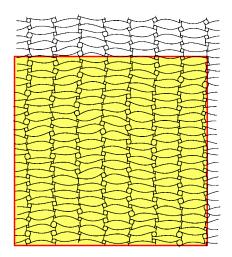
(b)
$$n_x = 16$$


Figure: The influmence of rib's thickness on the Poiison's ratio for 2 radii of RC: r=0.15 (a) and r=0.4 (b)

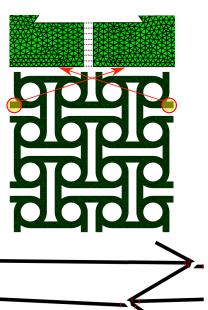

- CPS3 planar elements,
- B21 elastic RC Timoshenko beams with deformable RCs,
- B21 rigid RC Timoshenko beams with rigid RCs,

Poisson's ratio as a function of the anisotropy



Poisson's ratio as a function of the anisotropy

(a) Reference state



(b) Sample stretched along the X axis

Figure:
$$l_x = 4$$
, $\nu \approx -4 \ll -1$

Technical issues

- Periodic mesh!
- Generation of the mesh when $l_x \gg 1$ in the case of planar elements(CPS3) requires an introduction of "artificial" cuts. This is time-consuming.

Conclusions

- Changing the anisotropy parameter (l_x) one can tune ν .
- ν can reach any negative value.
- For thin ribs the Timoshenko beam elements approximation gives satisfactory convergence.
- The disorder introduced by random RC radii has a negligible impact on ν in the case of thin ribs, however, for thick ribs the impact is noticeable.
- Anti-chiral structures with rectangual symmetry are effective strain amplifiers with $\nu \ll -1$.
- Thiner ribs give lower ν but the effective structure's stiffness is also decreased.

This work was supported by the (Polish) National Centre for Science under the grant NCN 2012/05/N/ST5/01476. Part of the simulations was performed at the Poznań Supercomputing and Networking Center (PCSS).

Conclusions

- Changing the anisotropy parameter (l_x) one can tune ν .
- ν can reach any negative value.
- For thin ribs the Timoshenko beam elements approximation gives satisfactory convergence.
- The disorder introduced by random RC radii has a negligible impact on ν in the case of thin ribs, however, for thick ribs the impact is noticeable.
- Anti-chiral structures with rectangual symmetry are effective strain amplifiers with $\nu \ll -1$.
- Thiner ribs give lower ν but the effective structure's stiffness is also decreased.

This work was supported by the (Polish) National Centre for Science under the grant NCN 2012/05/N/ST5/01476. Part of the simulations was performed at the Poznań Supercomputing and Networking Center (PCSS).

Thank you