
The treatment of bacterial infections through the 
administration of chemotherapeutic agents, which 
began in the 1930s, was one of the most profound med-
ical advances of the twentieth century. The origins of 
almost all of the antibacterial drugs in use today lie in 
empirical screening programmes to identify inhibitors 
on the basis of their ability to prevent bacterial growth 
and can be traced to the so-called ‘golden period’ of 
antibacterial-drug discovery between the 1940s and 
1970s1,2. Subsequent development of these drugs, or 
agents derived from them, has produced an impres-
sive global reduction in the burden of disease caused by  
bacterial infection.

Unfortunately, the widespread emergence of resist-
ance to antibiotics in pathogenic bacteria over the past 
30 years is now a serious threat to global public health 
and could undermine the major advances achieved 
in the treatment of infection3–9. Paradoxically, as the 
problems accompanying the emergence of resistance to 
existing drugs increase, there has been a decline in the 
discovery and development of new antibacterials. The 
reasons for this situation are complex1,3–5 but, in part, 
reflect technical difficulties associated with the identifi-
cation of suitable novel compounds for development as 
candidate antibacterials.

In the past, many successful antibacterial agents were 
sourced from empirical screening of natural products 
or of synthetic chemical libraries6,7. However, in recent 
years empirical screening has not returned suitable  
pharmacophores for development. Indeed, in the past 
40 years only two new structural types, daptomycin and 
linezolid, have been introduced to the clinic following their  
discovery using empirical screening methods8.

The determination of complete bacterial genome 
sequences and the parallel development of other tech-
niques such as proteomics inspired a new genomics-
based approach to drug discovery from the mid 1990s9. 
By March 2009, crystal structure data were available for 
more than 600 individual proteins derived from bacte-
ria (see the Protein Data Bank and TargetDB databases). 
Many companies sought to identify novel antibacterial 
agents from high-throughput screening (HTS) cam-
paigns using purified enzyme targets that were vali-
dated by genomic approaches as being essential for the 
organism. It was thought that the era of exploiting novel 
natural products or continually modifying existing com-
pounds into improved analogues had passed and that 
novel agents directed against previously unexploited tar-
gets would be identified10. The major investment dedi-
cated to the genomic approach for antibacterial-drug 
discovery reflected the optimism about its likely success. 
Small-molecule screening approaches had successfully 
identified promising lead compounds in other thera-
peutic areas, such as treatments for cancer, diabetes and 
asthma11, and consequently the compound collections 
used for HTS of bacterial targets were largely composed 
of small synthetic molecules12. However, the success  
rate of the concerted genomic and HTS initiatives has 
been extremely low, and new strategies are required in 
order to develop the next generation of antibiotics6.

The time may now be right to consider fresh 
approaches to antibacterial-drug discovery. The power 
of structure-based drug discovery (SBDD) (FIG. 1) has 
been demonstrated most clearly by the discovery of new 
therapeutics for HIV/AIDS, a case in which structural 
knowledge of the HIV protease enabled the successful 
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Pharmacophore
A set of structural features in a 
molecule that are recognized 
at a receptor site and are 
responsible for the biological 
activity of the molecule.
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Abstract | The modern era of antibacterial chemotherapy began in the 1930s, and the next 
four decades saw the discovery of almost all the major classes of antibacterial agents that 
are currently in use. However, bacterial resistance to many of these drugs is becoming an 
increasing problem. As such, the discovery of drugs with novel modes of action will be vital 
to meet the threats created by the emergence of resistance. Success in discovering 
inhibitors using high-throughput screening of chemical libraries is rare. In this Review  
we explore the exciting opportunities for antibacterial-drug discovery arising from 
structure-based drug design.
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Algorithm
A finite sequence of 
instructions; an explicit, 
step-by-step procedure for 
solving a problem, often used 
for calculation and data 
processing.

Scoring function
A fast, approximate 
mathematical method that is 
used to predict the strength of 
the non-covalent interaction 
(also referred to as the binding 
affinity) between two molecules 
following docking. Scoring 
functions are normally 
parameterized (or trained) 
against a data set consisting of 
experimentally determined 
binding affinities between 
molecular species that are 
similar to the species that the 
user wishes to predict. For 
predictions of protein–ligand 
affinities, the tertiary structure 
of the protein, the active 
conformation of the ligand  
and the binding mode must 
be known.

design and development of five protease inhibitors that 
are now commercially available drugs13–15. Further suc-
cesses that owe their origins to SBDD are drugs such as 
nelfinavir (Viracept; ViiV Healthcare )16 and amprenavir 
(Agenerase; GlaxoSmithKline) (compounds 14 and 15; 
see Supplementary information S1 (figure))17 for AIDS, 
zanamivir (relenza; GlaxoSmithKline)18 for influenza, 
the cyclooxygenase 2 (CoX2; also known as PTGS2) 
inhibitors celecoxib (Celebrex; Pfizer)19 and rofecoxib 
(Vioxx; Merck — although this was later withdrawn 
owing to safety concerns) (compounds 16 and 17; see 
Supplementary information S1 (figure))20.

Although the potential of SBDD in antibacterial-drug 
discovery has yet to be fully realized, there are many 
validated molecular targets already available (FIG. 2; 

TABLE 1). The growing number of validated targets for 
which structural information has been obtained makes 
this approach increasingly attractive21. In this review, we 
describe the use of SBDD for the development of novel 
antibacterial agents.

The principles underpinning SBDD
The starting point for all structure-based design work, 
whether ligand- or protein-based, is the choice of a suit-
able target. An antimicrobial-drug target should be essen-
tial, have a unique function in the pathogen and exhibit an 
activity that can be altered by a small molecule. Tools are 
emerging to prioritize targets on the basis of their predicted 
suitability for SBDD. A recent study correlated the charac-
teristics of protein-binding pockets with the frequency of 
the binding ligands identified by nuclear magnetic reso-
nance (nMr)-based screening. This has lead to the crea-
tion of an algorithm that can predict the suitability of the 
binding pocket on the basis of the characteristics that can 
be identified from high-resolution protein structures, 
such as the rigidity of the binding site and its hydrophobic 
character. Such algorithms will allow future researchers 
to focus their efforts in drug discovery on proteins that 
are more likely to yield high-affinity ligands22–24.

when choosing a target enzyme, it is important to 
be aware of the conformational variations of a protein 

during ligand binding. This reflects the fact that, unlike  
the structure of the protein in the crystal, in solu-
tion the protein is flexible and can undergo considerable 
conformational changes on ligand binding.

Until recently, most SBDD programs relied on a sin-
gle high-resolution protein crystal structure. However, 
as this is only a snapshot of the protein ‘frozen’ in one 
form, it can cause problems when designing ligands, 
as the biologically active form of the protein may be 
conformationally different to the crystal form. Many 
studies emphasize the importance of allowing for pro-
tein and ligand flexibility when performing SBDD25–27. 
Unfortunately, modelling of molecular flexibility, espe-
cially for the protein, drastically increases the compu-
ter time required, often making it prohibitive in terms  
of time and technical capacity. Programs and techniques 
such as SlIDe28, Flexe29,30 and MCSA–PCr (multicon-
formation simulated annealing–pseudo-crystallographic 
refinement)31 can be used to model protein flexibility, 
and most programs can now model ligand flexibility as 
well. A good example of the large degree of conforma-
tional flexibility seen during substrate binding is pro-
vided by MurA, which is involved in the synthesis of 
bacterial peptidoglycan. High-resolution crystal struc-
tures of MurA have been solved in the ‘apo’ form and 
also with bound substrate and substrate analogues. The 
inhibitor T6361 binds to MurA and blocks the confor-
mational change that is normally induced by substrate 
binding. The crystal structure of the MurA–T6361 
complex shows that the protein adopts a substantially 
different conformation to that seen in the structure of 
the MurA–substrate crystal32–34. This example demon-
strates the challenge of predicting the conformation 
of the ligand-binding pocket, even if knowledge of the 
dynamic motion of the protein is available. This situa-
tion is not unusual, creating a challenge for both ‘virtual 
HTS’ and de novo SBDD. Several methods are emerg-
ing to overcome these difficulties but have yet to be  
completely evaluated35.

Although the Protein Data Bank is rapidly expanding, 
there is a substantial gap between the number of struc-
tures available in the database and the number of known 
gene sequences. TABLE 2 gives a cross section of the 
number of individual protein targets for which structural 
data is available versus the number of genomic orFs for 
eight prominent bacterial pathogens.

For cases in which the crystal structure of the par-
ticular bacterial protein is not available, construction 
of a homology model is often possible, provided that a 
crystal structure is available for a protein with substantial 
sequence similarity to the protein of interest. Approaches 
to producing these models vary from purely ab initio 
methods36 based on only physical and chemical principles 
to models based on sequence and structural information. 
Advanced homology models use experimentally deter-
mined structures to predict the conformation of another 
protein that has a similar amino acid sequence. Homology 
modelling involves four steps: fold assignment, sequence 
alignment, model building and model refinement. Several 
computer packages are available to perform this process 
automatically; for example, the SwISS-MoDel software 

Figure 1 | Protocols for high-throughput screening docking and de novo design.  
a | A typical selection process for a compound purchased using virtual high-throughput 
screening (vHTS). b | A typical procedure for de novo design using programs such as 
SPROUT. SAR, structure–activity relationship.
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is a fully automated homology-modelling server avail-
able through the exPASy Proteomics Server37–40. CASP 
(Critical Assessment of Techniques for Protein Structure 
Prediction) is a competition involving protein structure 
prediction that has taken place biannually since 1994. The 
competition provides users of structure prediction serv-
ers with an opportunity to assess the quality of the various 
methods and servers41,42.

Methods for SBDD
Three main methods are available to assist in the  
identification of new putative ligands on the basis of 
structural information.

In the first approach, termed ‘substrate- and known 
inhibitor-inspired design’, the structures of substrates, 
known inhibitors or cofactors for the particular tar-
get enzyme are modified to become inhibitors by 
maximizing complementary interactions in the target 
site13–15,43,44. In the second approach, databases con-
taining the structures of small molecules are docked 
into a region of interest in silico and scored according 
to their predicted interactions in the target site. Many 
programs are available to perform such ‘virtual HTS’, 
all of which have different docking algorithms and dif-
ferent scoring functions. The third important approach 
involves de novo design of inhibitor scaffolds. Fragments 
of molecules are positioned in chosen sites in the target 
protein and then linked in silico to give complete mol-
ecules. These molecules can then be scored and ranked 
for factors such as their predicted binding affinity, 
their molecular complexity or their expected synthetic 

Table 1 | Targets and classes of antibacterial drugs 

Drug target Drug classes

Cell wall synthesis β-Lactams, bacitracin, cycloserine, fosfomycin and 
glycopeptides

Cell membrane integrity Daptomycin and polymyxins

Nucleotide biosynthesis Sulfonamides and trimethoprim

DNA replication Quinolines, nitrofurans and nitroimidazoles

RNA synthesis Rifamycins

Protein synthesis Aminoglycosides, chloramphenicol, fusidic acid, ketolides, 
macrolides, oxazolidinones, streptogramins, tetracyclines 
and mupirocin

Figure 2 | inhibitors designed using structure-based drug discovery. The structures of some of the key compounds 
that have been designed using structure-based drug design techniques. Abbreviations given in parentheses denote the 
molecular target for the compounds: cell wall synthesis (CW), DNA replication (DR), protein synthesis (PS) or RNA 
synthesis (RS). DdlB, d-alanine–d-alanine ligase; IC

50
, half-maximal inhibitory concentration; K

i
, inhibition constant; MetRS, 

methionyl-tRNA synthetase; MNEC, maximal non-effective concentration; VanA, vancomycin resistance protein A.

R E V I E W S

nATUre reVIewS | Microbiology  VolUMe 8 | jUly 2010 | 503

© 20  Macmillan Publishers Limited. All rights reserved10

http://expasy.org/


Force field
The functional form and 
parameter sets used to 
describe the potential energy 
of a system of particles.

Free energy
The calculated difference 
between the internal energy of 
a system and the product of its 
absolute temperature and 
entropy.

Linear-regression analysis
Any approach to modelling the 
relationship between one or 
more variables denoted Y and 
one or more variables denoted 
X, such that the model 
depends linearly on the 
unknown parameters to be 
estimated from the data.

accessibility (FIG. 1). The resulting designed inhibitor 
scaffolds are then synthesized in the laboratory and sub-
jected to biological evaluation. recent examples of these 
three approaches in the context of antibacterial-drug  
discovery are discussed below.

Substrate- and known inhibitor-inspired design
This approach uses the structural modification of known 
biologically active substrates and natural product-based 
inhibitors45. For example, SB-219383 (compound 18; see 
Supplementary information S1 (figure)) is a potent and 
specific inhibitor of bacterial tyrosyl-trnA synthetase 
(TyrrS) and was originally identified from the fer-
mentation broth of Micromonospora sp. nCIMB 40684 
(REFS 46–48). To simplify the chemical structure of the 
molecule, the bicyclic ring was cleaved to yield a com-
pound that retained potent TyrrS inhibition, and the 
addition of a butyl ester group led to improved potency. 
Another simpler molecule, SB-284485 (compound 1; 
FIG. 2) was also derived without losing inhibitory activ-
ity49, therefore providing an excellent template for  
further structural modifications.

Virtual screening approaches
The technique of molecular docking has been well 
established for some time. However, recent advances in 
both hardware and software algorithms have made pos-
sible the rapid docking of very large collections of small 
molecules into the chosen molecular target. The speed 
of some of these programs is such that up to 100,000 
molecular structures can be docked per day when using 
a cluster of parallel processors. However, as with all 
docking algorithms, the scoring function that is used 
to assess the validity of specific docking poses is para-
mount, and each program has its own unique scoring 
function. These scoring functions will necessarily place 
different weightings on the various factors involved in 
ligand binding. As none of these functions is considered 
faultless, a consensus scoring approach is the best way 
to identify potential lead molecules. Consensus scoring 
uses several scoring functions to predict binding affinity. 
If a compound is predicted to bind tightly to a chosen 
protein using several docking algorithms, this provides 
higher confidence in the prediction. Among the most 

prominent docking programs currently available for 
virtual screening are AutoDock, Glide (Schrödinger), 
GolD (The Cambridge Crystallographic Data Centre, 
Cambridge, UK), DoCK and eHiTS (SimBioSys Inc., 
Toronto, Canada). A selection of the most successful 
programs applied to the discovery of potential new  
antibacterials is discussed below (see also Supplementary 
information S2 (table) for additional resources).

AutoDock. AutoDock is a suite of automated docking 
tools designed to predict how small molecules, such as 
substrates or drug candidates, bind to a receptor of known 
three-dimensional structure. AutoDock  consists of two 
main programs: ‘autodock’ performs the docking of the 
ligand to a set of grids describing the target protein, which 
are pre-calculated by ‘autogrid’. In addition, a graphical 
front-end tool, AutoDockTools, is available to set up, visu-
alize and analyse the results of dockings performed using 
AutoDock.

The most recent version of the software, AutoDock 4.0, 
uses the AMBer force field as well as a free-energy scoring 
function based on a linear-regression analysis and a diverse 
set of protein–ligand complexes with known inhibition 
constants.

AutoDock uses a genetic algorithm to generate a range 
of docking poses that can be clustered according to their 
energetic similarity. Several studies have shown that in 
docking calculations the most populated clusters of the 
docked-ligand conformation are better predictors of  
the native state than the lowest-energy cluster50–53.

A recent example of the application of AutoDock 
to antibacterial-drug discovery is the structure-based 
virtual screening of the UK national Cancer Institute 
(nCI) ‘diversity set’ of 2,000 compounds using a  
crystal structure of d-alanine–d-alanine ligase (DdlB) 
from Escherichia coli, a key enzyme in peptidoglycan 
biosynthesis. Docking results were obtained as a list of 
compounds ranked according to their mean estimated 
binding affinity to the protein. This was determined by 
the calculated average free energy of binding for the most 
populated cluster of docked poses. Using this approach, 
the top 130 compounds were tested in an in vitro assay 
for inhibition of E. coli DdlB and several hits were 
identified. Three of these hits have novel scaffolds; two 

Table 2 | Structural genomics in bacterial pathogens

Species Total number  
of orFs*

Number of orFs 
cloned‡

Number of 
purified proteins‡

Number of solved 
structures in PDb‡

Escherichia coli 5,402 4,562 1,974 233

Pseudomonas aeruginosa 2,230 2,262 791 92

Haemophilus influenza 1,191 959 264 20

Staphylococcus aureus 2,043 1,762 465 35

Streptococcus pneumoniae 1,340 1,174 364 48

Enterococcus faecalis 2,363 2,106 580 63

Mycobacterium tuberculosis 2,315 1,094 341 112

Helicobacter pylori 841 537 173 14

PDB, Protein Data Bank. *Data taken from the genome database PEDANT (14 October 2009) . ‡Data taken from TargetDB (14 October 
2009) using the built-in query tools and requesting the information under each of the column headings for each species listed.
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Toxicity
The degree to which a 
substance is able to damage  
an exposed organism.

ADME
Absorption, distribution, 
metabolism and excretion. An 
acronym in pharmacokinetics 
and pharmacology describing 
the disposition of a 
pharmaceutical compound  
in an organism. 

Log P 
The partition coefficient (P), 
usually expressed as a log 
value, is a measure of the 
hydrophobic character of  
a substance, such that  
P = concentration of the 
substance in octanol / 
concentration of the  
substance in water.

of these (compounds 19 and 20; see Supplementary 
information S1 (figure)) are competitive inhibitors, 
competing with ATP, with inhibition constant (Ki)  
values in the low micromolar range, whereas the third 
(compound 2; FIG. 2) inhibited the enzyme in a non-
competitive manner. Additionally, compounds 2 and 20 
possessed some antimicrobial activity and are therefore 
promising hits for further optimization54.

Catalyst. Discovery Studio (Accelrys) provides a suite of 
software that has many applications, including SBDD,  
toxicity prediction, protein modelling and virtual HTS. 
The built-in virtual HTS screening tool, Catalyst, has been 
used in the development of novel antibacterial agents.

A high-throughput approach to crystallography 
identified several small-molecule inhibitors of the 
Staphylococcus aureus methionyl-trnA synthetase 
(MetrS), an enzyme that catalyses the highly specific 
attachment of methionine onto cognate methionine-
specific trnA55. The identified inhibitors all interact 
with an important amino acid, Asp51, and with two 

specific hydrophobic pockets. on the basis of this 
information, a four-point pharmacophore model was 
constructed using Catalyst. This model was used as 
a search query against the diverse compound collec-
tion from ChemDiv, which contains around 250,000 
compounds. A total of 461 molecules from the Catalyst 
search were identified as potential hits. These were 
docked into the S. aureus MetrS structure and re-
scored using the ligandFit scoring function56. of the 
31 compounds that were subsequently selected for bio-
logical testing, 22 displayed greater than 50% enzyme 
inhibition at a concentration of 100 μM, which is a hit 
rate of 71%. The most potent inhibitors, compounds 
3 and 21, are shown in FIG. 2 and Supplementary infor-
mation S1 (figure), respectively. This method provides 
an efficient way of finding new leads from a known 
active compound and compares favourably to random 
biological assaying of large compound libraries, which 
give hit rates of between 0.1% and 0.5%, on average57.

eHiTS. This is a recently developed virtual HTS soft-
ware package that takes individual compounds from a 
large library and calculates the optimal conformation 
that each of these ligands can adopt in a targeted pro-
tein cavity. The program then calculates a score for each 
structure according to the geometries of the ligand and 
the complementarities of ‘surface points’ on the recep-
tor and ligand. Complementary surface points receive a 
positive score, whereas repulsive surface points receive 
a penalty score. Additional terms are used in the final 
scoring function to further reflect all factors involved 
in binding, such as steric clashes, depth of the cavity, 
solvation, conformational-strain energy of the ligand, 
intramolecular interactions in the ligand, and entropy 
loss due to ‘frozen’ rotatable bonds58–60.

eHiTS takes a unique approach to the docking 
problem, having an innovative docking algorithm and 
a novel system for the scoring function. The approach 
involves breaking ligands into rigid fragments and the 
connecting flexible chains and then docking each rigid 
fragment to every possible place in the cavity (FIG. 3). 
recent examples of the use of eHiTS include screens 
for inhibitors of the Mycobacterium tuberculosis shiki-
mate kinase (AroK), inhibitors of TyrrS and inhibitors 
of MurD and MurF.
M. tuberculosis AroK catalyses the phosphorylation 
of shikimate to shikimate-3-phosphate. An eHiTS 
screening protocol was used recently to identify poten-
tial inhibitors of AroK61. Screening compounds were 
extracted from the FAF-Drugs (Free ADME/tox filter-
ing) collection to give 214,492 compounds following 
filtering using ADMe and toxicity filters. FAF-Drugs is 
an online service that allows users to process their own 
compound collections through simple ADMe/tox- 
filtering rules such as molecular mass, polar surface area, 
log P or number of rotatable bonds. From this collection 
of over 200,000 compounds, docking in the AroK active 
site using eHiTS identified 644 small molecules that 
were predicted to bind more tightly to AroK than the 
natural substrate and that are potential inhibitors with  
half-maximal inhibitory concentration (IC50) values in 

Figure 3 | The eHiTS docking strategy. In eHiTS, ligands are divided into rigid 
fragments and connecting flexible chains (step 1). These fragments are docked 
individually into the binding site of the target receptor (step 2) and a fast 
graph-matching algorithm finds all matching solutions to reconstruct the original 
molecule (step 3), which can then be optimized (step 4), scored and ranked (step 5).
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the low-micromolar range. The top 200 compounds were 
examined in further detail using the graphical user inter-
face CheVi (SimBioSys) to determine key interactions 
and shape complementarity with the binding pocket of 
the enzyme.

 In another study, a series of 340 potential inhibi-
tors of TyrrS were docked into the active sites of both 
the human and staphylococcal TyrrS proteins using 
eHiTS version 5.3. This study sought to find molecules 
that bind more strongly to the staphylococcal enzyme 
than to the human enzyme. Therefore, the scores for 
each ligand docked into the two separate active sites 
were compared, and the ligands with the greatest differ-
ence in predicted binding affinity for the two enzymes 
were then examined in further detail. This led to the 
identification of ten potential inhibitors with a stronger 
affinity for staphylococcal TyrrS than for the human 
protein. These compounds have not yet been screened 
against the bacterial enzyme, but this approach would 
seem to offer potential for the design of selective  
antibacterial agents62.

The Mur enzymes are essential for steps in peptido-
glycan biosynthesis in bacteria63. eHiTS was used to screen 
1,990 compounds from the nCI diversity set using crystal 
structures of MurD and MurF as targets, and the 50 top-

scoring compounds for each enzyme were selected for 
biological evaluation63. For MurD, 4 of the top 50 com-
pounds showed IC50 values of below 250 μM (3 of these 
are shown here as compounds 4, 13 and 21; FIGS 2,4a and 
Supplementary information S1 (figure)).

only one of the compounds selected from the 
MurF screen (compound 5; FIGS 2,4b) showed signifi-
cant inhibitory activity (that is, had residual activity 
at 250 μM below their IC50 values). The lower hit rate 
for MurF might be attributed, in part, to the com-
pounds being assayed against E. coli MurF rather than 
Streptococcus pneumoniae MurF, the crystal structure of 
which was used to perform the eHiTS screening runs.

UNITY. UnITy, a module in the SyByl (Tripos) 
molecular modelling software, is a search and analysis 
system for exploring chemical and biological databases. 
It can be used for locating compounds that match a 
pharmacophore or fit a receptor site. UnITy’s two-
dimensional searching capabilities offer exact, substruc-
ture and similarity searching. Conformationally flexible 
three-dimensional searching rapidly finds molecules 
that can satisfy queries regardless of the conformation 
stored in a database. Structural queries may be based 
on complete molecular structures, molecular fragments, 
pharmacophore models or the receptor site.

Using UnITy, a virtual screen was carried out for 
inhibitors of M. tuberberculosis chorismate mutase64, 
an enzyme that catalyses the conversion of chorismate 
to prephenate in the tyrosine and phenylalanine bio-
synthesis pathway. Starting from a known inhibitor 
of a homologous enzyme, a three-dimensional phar-
macophore search of a database of 15,000 compounds 
was performed. of the 15 highest-scoring molecules,  
4 demonstrated inhibition in the enzyme assay. The most 
potent molecule (compound 6) is shown in FIG. 2.

DOCK. DoCK is an open-source molecular-docking 
software package that is frequently used in SBDD. 
Historically, the DoCK algorithm addressed rigid-body 
docking using a geometric-matching algorithm to super-
impose the ligand onto a negative image of the binding 
pocket. Important features that improved the algorithm’s 
ability to find the lowest-energy binding mode have been 
added over recent years, including force field-based 
scoring, on-the-fly optimization, an improved matching 
algorithm for rigid-body docking and an algorithm for 
flexible-ligand docking. In one study using DoCK, over 
4 million compounds were screened for predicted bind-
ing to the biotin- or propionyl CoA-binding pockets of 
AccD565, an essential M. tuberculosis acyl CoA carboxy-
lase carboxyltransferase subunit. one of the nine top-
scoring compounds identified by DoCK (compound 7; 
FIG. 2) had an IC50 of 10 μM against the enzyme. DoCK 
has also been used for a fragment-based screening pro-
gramme against the β-lactamase CTX-M-9 (REFS 66,67). 
A fragment subset of 67,489 compounds were docked 
into the active site of the enzyme, and compounds 
were selected from the top of the ranking list. From  
the 69 fragments investigated (which included com-
pound 8; FIG. 2), 10 exhibited IC50 values in the micromolar  

Figure 4 | inhibitors designed using eHiTS. a | An inhibitor of MurD (compound 13), 
discovered using eHiTS, docked in the MurD active site. The inhibitor binds in the same 
pocket as the substrate (not shown) and makes key interactions with the labelled residues. 
The MurD backbone is shown as green ribbons. b | An inhibitor of MurF (compound 5), 
discovered using eHiTS, docked in the active site of the enzyme. The inhibitor interacts 
with key labelled residues, and the protein backbone is shown as green ribbons.

R E V I E W S

506 | jUly 2010 | VolUMe 8  www.nature.com/reviews/micro

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.simbiosys.ca/chevi/index.html
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=12328
http://www.tripos.com/index.php?family=modules,SimplePage,,,&page=sybyl_sybyl
http://www.uniprot.org/uniprot/P96885


Nature Reviews | Microbiology

O
O–

NH3
+

O–

O

11

Arg255
Mg2+

Tyr216

Glu15

Gly15

DNA gyrase
An enzyme that unwinds DNA 
so that the DNA can duplicate.

range — a hit rate of 14.5%. The same group also carried 
out a similar study looking for fragment inhibitors of 
the β-lactamase AmpC68. A library of 137,639 fragments 
from the ZInC database were docked, and 48 fragments 
that were highly ranked were purchased, 23 of which had 
Ki values ranging from 0.7 to 9.2 mM. The 48% hit rate 
compared very favourably with lead-like docking and 
HTS against the same enzyme68.

De novo design using protein structures
De novo ligand design has been continually improving 
since its invention in the early 1990s, reflecting both the 
tremendous developments in computational power and 
the continual improvement of efficient computational 
algorithms (FIG. 1). Most of the de novo design tools 
follow a similar pipeline in terms of operation. The 
most widely used de novo design programs are lUDI 
and SProUT (Keymodule ltd, leeds, UK) (discussed 
below), SkelGen (De novo Pharmaceuticals ltd), Flux69, 
GAnDI and BoMB (Cemcomco, Madison, Connecticut, 
USA). Several of these de novo methods have been used 
to design novel antibacterial agents.

LUDI. lUDI, another module in Discovery Studio, con-
structs possible new ligands for a given protein of known 
three-dimensional structure. This approach is based on 
rules about energetically favourable non-bonded-contact 
geometries between functional groups of the protein 
and the ligand; these rules are derived from a statistical 
analysis of the crystal packing of organic molecules.

Small fragments are docked into the protein’s binding 
site in such a way that hydrogen bonds and ionic interac-
tions can be formed with the protein and hydrophobic 
pockets are filled with lipophilic groups derived from 
the ligands. The program can then append further frag-
ments onto a previously positioned molecular core. It is 
also possible to link several fragments together, through 
bridge fragments, to form a complete molecule. All puta-
tive ligands retrieved or constructed by lUDI are then 
scored using a simple scoring function that was fitted 

to experimentally determined binding constants of  
protein–ligand complexes70.

In silico screening for potential inhibitors of DNA gyrase 
was performed using lUDI and Catalyst to screen the 
available-chemicals database (ACD) and part of the roche 
compound inventory (a total of 350,000 compounds). 
lUDI was used to dock small ‘needle’ molecules into the 
binding site of the gyrase. needle screening is a technique 
that can be used to identify low-molecular-mass inhibitors 
(with a molecular mass of <300 daltons) that can pene-
trate into deep and narrow channels and subpockets. The 
lUDI searches led to the identification of around 150 weak 
inhibitors (including molecules 23–25; see Supplementary 
information S1 (figure)). X-ray crystallography verified 
binding of the needles to the ATP-binding site. Following 
structure–activity relationship (SAr) studies to probe  
the structural requirements of the validated needles, a series 
of indazole-based inhibitors was identified, with the most 
potent compound (compound 9; FIG. 2) being ten times  
as active as novobiocin, with a maximal non-effective 
concentration (MneC) of 0.03 μM70.

SPROUT. SProUT uses a fragment-joining technique 
to generate structures that fit the steric and electronic 
constraints of a specific receptor site or pharmacophore 
hypothesis. During structure generation, atoms or frag-
ments of molecules are placed at each of the ‘target sites’ 
and are then linked to produce molecular ‘skeletons’. 
Molecular fragments are represented by templates, in 
which atoms are labelled purely by their hybridization 
state and are represented by vertices, and bonds are 
labelled as single, double, triple or aromatic. Several 
actual molecular fragments can be produced from each 
template by replacing the vertices with any element that 
can adopt the appropriate hybridization state.

The structure generation phase joins templates 
together to produce skeletons. each skeleton represents 
several molecules, because each component template can 
represent several molecular fragments. Skeleton genera-
tion begins by selecting a template and positioning it at a 
target site so that it satisfies the steric requirements asso-
ciated with that particular site. new molecular templates 
can then be added to further target sites, chosen by the 
user. These docked molecular templates are then joined 
using ‘spacer’ templates, again under the full control of 
the user. once skeletal generation is complete, the result-
ing structures can be clustered and sorted using a range 
of parameters specified by the user. These include overall 
molecular properties such as molecular complexity and 
estimated binding affinity, as well as more detailed filter-
ing options such as the presence or absence of certain 
molecular features. In this way, unwanted structures can 
be identified and discarded, leaving only structures that 
meet the requirements of the user71–77.

SProUT was used to design a series of novel mac-
rocyclic inhibitors of the bacterial cell wall biosynthesis 
enzyme MurD78. SProUT revealed that the binding 
cavity contains a hydrophobic pocket that is not used 
by the natural substrate. Simplification of the MurD sub-
strate generated models of possible macrocyclic inhibi-
tors that omit much of the sugar portion of the natural 

Figure 5 | SProUT-designed inhibitor modelled in d-alanine–d-alanine ligase. The 
inhibitor (compound 11) interacts with key labelled residues in the d-alanine–d-alanine 
ligase (DdlB) of Escherichia coli, the backbone of which is in green.
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substrate. A series of macrocyclic molecules based on 
these SProUT-designed molecular skeletons were syn-
thesized and evaluated as inhibitors of E. coli MurD.  
It was found that compound 10 (FIG. 2) exhibited the 
highest affinity for MurD.

The SProUT software suite was also used to design 
a novel cyclopropyl-based inhibitor of the bacte-
rial enzyme DdlB79. enzymological evaluation of the 
designed inhibitor (compound 11; FIG. 2) showed that 
this molecule (as a diastereomeric mixture) inhib-
its the activity of DdlB with an apparent Ki value of 
12.5 (± 0.l) μM (FIGS 2,5).

The Van enzymes are responsible for resistance to van-
comycin in S. aureus and Enterococcus spp. SProUT was 
used in conjunction with the X-ray crystal structure of the 
Enterococcus faecium d-alanine–d-lactate ligase (VanA) 
to devise new VanA inhibitors based on a hydroxyethyl-
amine template that was designed to mimic the tetrahe-
dral reaction intermediates80. The most active compound 
(compound 12; FIG. 2) had an IC50 of 224 μM against 
VanA. owing to the similar topology of the active sites 
of VanA and DdlB, the set of generated compounds was 
also tested against E. coli DdlB. Compound 12 exhibited 
an IC50 value of 110 μM against DdlB (FIGS 2,6).

recent reports from groups in the pharmaceutical 
industry have commented on the difficulty in identi-
fying inhibitors of bacterial rnA polymerase, a cru-
cial enzyme in the construction of rnA chains from 
DnA templates, using traditional HTS approaches9. 
SProUT was used to create the first de novo-
designed rnA polymerase inhibitors (for example, 
compound 26; see Supplementary information S1 
(figure))81 using the X-ray crystal structure of rnA 
polymerase from Thermus aquaticus. Preliminary 
experimental data indicate that these molecules do 
inhibit bacterial rnA polymerase.

The production of inhibitors that are active in the 
low-micromolar concentration range after pure de novo 

design is now commonplace using this approach, and 
such inhibitors provide an excellent starting point for 
further optimization.

SPROUT-LeadOpt. SProUT-leadopt (Keymodule) is 
specifically designed to aid in the structural optimization 
process following the discovery of a lead molecule. Unlike 
SProUT, SProUT-leadopt is not a de novo design tool; 
rather, it produces structures that are similar to known 
lead molecules and that have improved predicted bind-
ing affinities. Core extension allows the user to explore 
different regions of a receptor’s binding site by adding 
monomers to a core molecule. SProUT-leadopt uses a 
set of synthetic-chemistry rules to identify ‘reactive func-
tional groups’ on a core molecule. It then systematically 
generates extended structures in a combinatorial fashion 
by carrying out virtual synthetic chemistry using common 
synthetic reactions and a database of monomer structures. 
‘Monomer replacement’ uses retrosynthetic fragmenta-
tion to identify ‘monomers’ that are present in one or 
more bound ligands. new molecular structures are then 
created by replacing these monomers with structurally 
related molecules taken from a ‘monomer library’. The 
power of this approach was recently shown by the devel-
opment of inhibitors of dihydroorotate dehydrogenase82. 
Although the enzyme is not a bacterial target protein, this 
work demonstrates the power of SProUT-leadopt in the 
development of new lead scaffolds.

Future perspectives
Undoubtedly, structure-based approaches for the iden-
tification of new inhibitors of both classical and novel 
bacterial target proteins will increase in future years. 
However, it should also be remembered that improved 
understanding of the molecular basis by which existing 
antibacterial agents act may provide insights for new 
SBDD approaches. For example, the structural basis of 
the interaction between the bacterial ribosome and sev-
eral established antibiotics, such as tetracycline, strep-
tomycin and chloramphenicol, has been elucidated in 
recent years83–85.

In addition to ribosome–antibiotic structures, several 
high-resolution crystal structures have been obtained 
that show the binding of the antibiotics rifampicin 
and myxopyronin to bacterial rnA polymerase86,87. 
These structures are helpful not only for determining 
the mechanism of action of these antibiotics but also 
for the development of novel inhibitors or, in a ligand-
based approach, for searching for structurally simplified 
analogues of these macrocyclic, natural product-based 
inhibitors. The binding position of the macrocycles in 
the crystal structures of rnA polymerase can also be 
used to identify suitable binding pockets in this large 
enzyme. Indeed, it may be possible to design molecules 
that simultaneously inhibit two or more functional sites 
in the enzyme, which could minimize the potential for 
the development of resistance.

The growing global burden of bacterial resistance 
to established antibacterial drugs is creating important 
but unmet medical needs, and in some cases isolates 
have been described that are resistant to all previously 

Figure 6 | inhibitor of vancomycin resistance protein A, designed using SProUT. 
The inhibitor (compound 12) binds to vancomycin resistance protein A (VanA) (green 
backbone) through the same pocket as the phosphate substrate. Key interactions with 
labelled VanA residues are shown.
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appropriate chemotherapeutic agents. In recent years, 
HTS of chemical libraries has dominated the search 
for new antibacterial-drug leads. Unfortunately this 
has not been successful, and a consensus is now emerg-
ing that new approaches are required9. SBDD is still in 

its infancy. However, the technology described in this 
review may provide the springboard for future, more 
successful attempts to discover the new classes of anti-
bacterial drugs that will be required to fight infection in 
the twenty-first century and beyond.
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