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Kowalczyk, A.; Stączek, P.; Bak, A.;

Kiliszek, A.; et al. Design, Synthesis,

and Evaluation of Novel 3-Carboranyl-

1,8-Naphthalimide Derivatives as

Potential Anticancer Agents. Int. J.

Mol. Sci. 2021, 22, 2772. https://

doi.org/10.3390/ijms22052772

Academic Editor: Giovanni Natile

Received: 18 February 2021

Accepted: 6 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland;
srykowski@cbm.pan.pl

2 Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St.,
61-704 Poznan, Poland; d_gurda@ibch.poznan.pl (D.G.-W.); mplocka@ibch.poznan.pl (M.O.-P.);
agaw@ibch.poznan.pl (A.F.-W.); giel@ibch.poznan.pl (M.G.-P.); wyszkoe@ibch.poznan.pl (E.W.);
kiliszek@ibch.poznan.pl (A.K.); wojtekr@ibch.poznan.pl (W.R.)

3 Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz,
12/16 Banacha St., 90-237 Lodz, Poland; aleksandra.strzelczyk@biol.uni.lodz.pl (A.K.);
pawel.staczek@biol.uni.lodz.pl (P.S.)

4 Department of Chemistry, University of Silesia, 9 Szkolna St., 40-007 Katowice, Poland; andrzej.bak@us.edu.pl
* Correspondence: aolejniczak@cbm.pan.pl; Tel.: +48-42-272-36-37
† Equal contribution.

Abstract: We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide
and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investi-
gated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen
species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides
and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalim-
ides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for
compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or
G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35
caused strong apoptosis and induced ROS production, which was proven by the increased level of
2′-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II
inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lyso-
somes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property
profile of the conjugates using the principal component analysis. The creation of an inhibitory profile
and descriptor-based plane allowed forming a structure–activity landscape. Finally, a ligand-based
comparative molecular field analysis was carried out to specify the (un)favorable structural modifica-
tions (pharmacophoric pattern) that are potentially important for the quantitative structure–activity
relationship modeling of the carborane–naphthalimide conjugates.

Keywords: naphthalimides; carborane; anticancer activity

1. Introduction

1,8-Naphthalimides are a class of polycyclic imides consisting of π-deficient flat
aromatic or heteroaromatic ring systems. These compounds have been used in biological
and nonbiological applications and have mainly been tested as DNA intercalators and
anticancer as well as antibacterial, antiviral, and analgesic agents [1]. They exert their
antitumor activity through the inhibition of topoisomerase I/II enzymes, photoinduced
DNA damage, induction of reactive oxygen species (ROS) production, and malfunctions
of lysosome and mitochondria [2], receptor tyrosine kinases [3], and DNA and RNA
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synthesis [4]. Most of the naphthalimides exhibit fluorescence and are thus widely used in
biological imaging [5], as fluorescent probes for the targeted sensing of ions [6], endogenous
molecules [7], and cancer cells [8].

Among the most promising and well-described naphthalimides are mitonafide,
pinafide, amonafide, and elinafide, which exhibit excellent antitumor activity. Mitonafide,
amonafide, and elinafide have entered phase II clinical trials. Despite their effectiveness,
the latter two are no longer in clinical trials due to unpredicted toxicity caused by one of
their metabolites, N-acetylamonafide, and neuromuscular dose-limiting toxicity, respec-
tively [1,9]. The discovery, development, and structure–activity relationships (SARs) of
1,8-naphthalimide derivatives as anticancer agents were summarized by Tandon et al. [10]
and Tomczyk et al. [9] in their works. It has been revealed that the modification of the
naphthalimide backbone at different positions (especially positions 3 and 4) had remarkable
effects on the anticancer activity, DNA binding properties and spectroscopic properties of
the compounds [11].

The biomedical application of carboranes (C2B10H12) (Figure 1) has been reviewed in
several papers [12–19], particularly focusing on their properties that may be of importance
in the design of biologically active compounds, which include the following: their ability
of unique noncovalent interactions (ionic interaction, σ–hole interaction, dihydrogen bond
formation); spherical or ellipsoidal geometry and rigid three-dimensional (3D) arrangement
(which offer versatile platforms for 3D molecular construction); lipophilicity, amphiphilicity,
or hydrophilicity (depending on the type of boron cluster used which allows modulating
the pharmacokinetics and bioavailability); chemical stability as well as susceptibility to
functionalization; bioorthogonality; stability in biological environments; abiotic origin; and
high content of boron (important for boron neutron capture therapy, BNCT).
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Figure 1. General structure of icosahedral dicarba-closo-dodecaborane (closo-carborane, C2B10H12),
and example structures of naphthalimides with boron cluster [20].

In our recent work, we described the methods used for the synthesis of naphthalimides
modified with carborane or metallacarborane groups, as analogs of mitonafide (Figure 1).
The cytotoxic properties of the obtained conjugates were investigated in the human cancer
cell lines HepG2 and RPMI 2650, and the results showed that the type of boron cluster
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affected the various cytotoxic activities of the tested compounds. Moreover, flow cytometry
analysis indicated that the naphthalimide boron cluster conjugate could effectively induce
cell cycle arrest at G0/G1 phase and promote mainly apoptosis in the HepG2 cell line.
However, the studied compounds were found to be rather weak classical DNA intercalators,
compared to mitonafide, which indicates other types of interaction with DNA [20].

Based on the above results, we continued our research, and in this paper, we describe a
method for synthesizing naphthalimide derivatives, containing 1,2-dicarba-closo- dodecab-
orane (ortho-carborane) or 1,7-dicarba-closo-dodecaborane (meta-carborane) at position 3 of
the heteroaromatic skeleton, to investigate their anticancer activity and ability to induce
cell death, cell cycle arrest, ROS production, and inhibition of human topoisomerase IIα.
Studies on calf-thymus DNA (ct-DNA) were performed to evaluate the interaction of the
synthesized derivatives with DNA. Additionally, we carried out a SAR-mediated similarity
assessment of the property profile of the conjugates containing carborane group.

2. Results and Discussion
2.1. Chemistry
2.1.1. Synthesis of Mitonafide and Pinafide Analogs Containing Carborane Clusters

The novel naphthalimide derivatives containing carborane clusters described in this
study (compounds 8–11, 17–20, 27–30, 33–36, 39–42, Figures 2–5) were synthesized using
the following methods: (1) copper(I)-catalyzed Huisgen–Meldal–Sharpless 1,3-dipolar
cycloaddition of azides and alkynes (i.e., click chemistry) (Schemes 1 and 2); (2) reductive
amination (Scheme 3); and (3) amidation reactions (Scheme 4).

Click chemistry is a very efficient and popular method to modify molecules [21,22].
Naphthalimide–carborane conjugates were synthesized via click chemistry using a stan-
dard procedure involving three steps. In the first step, suitable boron cluster donors
(4, 5) [23] were dissolved in a mixture of THF and water. In the second step, a naphthalic
anhydride containing a terminal triple bond (3, 14, Schemes 1 and 2), a catalytic amount
of sodium ascorbate, and CuSO4·5H2O were added, and the reactions were performed
at 35 ◦C for 2–4 h. After purification, modified anhydrides (6, 7, 15, 16, Schemes 1 and 2)
were obtained in yields ranging between 48% and 74%, with the lower yield for derivatives
modified with meta-carborane. In the third step, the modified naphthalic anhydrides were
transformed to mitonafide and pinafide analogs via a nucleophilic reaction with appro-
priate amine. The yield of the products 8–11 and 17–20 (Schemes 1 and 2) achieved after
isolation and purification by column chromatography was in the range of 41–84%. The
modified anhydrides 6, 7, 15, and 16, as well as modified naphthalimides 8–11 and 17–20,
were characterized by 1H-, 13C-, and 11B-NMR, FT-IR, MS, RP-HPLC (Figures S1–S86
(Electronic Supplementary Information, ESI)), and TLC.

It is worth adding that products 8–11 can be directly synthesized from mitonafide or
pinafide derivatives bearing terminal triple bonds with boron cluster donors 4, 5, especially
in the presence of tris[((1-benzyl)-1H-1,2,3-triazol-4yl)methyl]amine (TBTA) as a ligand to
complex and “protect” copper(I) [24]. However, an advantage of the synthetic pathway
described above is that one substrate (the anhydride 6 or 7) gives rise to two target products–
mitonafide and pinafide analogs.

Due to its synthetic merits as well as the ubiquitous presence of amines among biolog-
ically active compounds, reductive amination plays a dominant role in pharmaceutical and
medicinal chemistry. It is characterized by operational ease and a wide toolbox of protocols
and hence is considered one of the key approaches to C−N bond construction [25].
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Scheme 1. Synthesis of naphthalimide–ortho-/meta-carborane conjugates 8–11. Reagents and Condi-
tions: (i) HCCSi(CH3)3, Pd(PPh3)4, CuI, DMF, TEA, 2 h, 65 ◦C; (ii) TFA, H2O, THF, 8 h, room tempera-
ture (RT); (iii) 1-(3-azidopropyl)-1,2-dicarba-closo-dodecaborane (4), CuSO4·5H2O, sodium ascorbate,
THF/H2O, 4 h, 35 ◦C (for 6); 1-(3-azidopropyl)-1,7-dicarba-closo-dodecaborane (5), CuSO4·5H2O,
sodium ascorbate, and THF/H2O, 2 h, 35 ◦C (for 7); (iv) N,N-dimethylethylenediamine (for 8 and
10), N-(2-aminoethyl)pyrrolidine (for 9 and 11), EtOH, 1 h, 35 ◦C and then 1 h, 45 ◦C. The yields of
the compounds are given in parentheses.

Treatment of 3-amino-1,8-naphthalic anhydride (12) [26], 3-amino-N-[2-(dimethyl-
amino)ethyl]-1,8-naphthalimide (21), or 3-amino-N-[2-(N-pyrrolidinyl)ethyl]-1,8-naphthalimide
(22) [26,27] with an appropriate aldehyde containing ortho-carborane (23) or meta-carborane
(24) [28] in anhydrous THF or MeOH at 65–70 ◦C under an inert (Ar) atmosphere resulted
in the corresponding Schiff bases 25–30, but these could not be isolated due to their insta-
bility (Scheme 3). Compounds 31–36 were obtained by treating the modified Schiff bases
25–30 witH-NaBH3CN, followed by column chromatography.

Decaborane (B10H14), one of the principal boron hydride clusters, has been reported
as a mild reducing agent. It is quite stable, easy to handle, and can be effortlessly removed
after reaction [29]. The decaborane cluster is used in various types of reactions, such
as reductive amination of aldehydes [30], reductive etherification [31], or even one-pot
reduction/reductive amination witH-Nitro compounds [32]. It has been reported that the
synthesis of compounds 32, 35, and 36 modified with an ortho-/meta-carborane cluster was
carried out using decaborane as a reducing agent, which resulted in an expected product
with a lower or similar yield compared to that obtained from the reaction using NaBH3CN.
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Therefore, this method was not included in the Materials and Methods section in this paper.
The structure, purity, and homogeneity of compounds 31–36 were confirmed by 1H-, 13C-,
and 11B-NMR, FT-IR, MS, RP-HPLC (Figures S87–S129 (ESI)), and TLC.

Formation of amide bonds is one of the most frequently encountered reactions in the
synthesis of biologically active compounds [33]. We developed methods for synthesizing
3-aminonaphthalimide derivatives bearing carborane clusters 39–42 by the formation of
amide bond between naphthalimide and carborane (Scheme 4).
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Scheme 2. Synthesis of naphthalimide–ortho-/meta-carborane conjugates 17–20: Reagents and Condi-
tions: (i) NaNO2, H2SO4, H2O, 0 ◦C, and then CO(NH2)2, 1 h, RT, and 1 h, 100 ◦C; (ii) HCCCH2OH,
PPh3, THF, 0 ◦C, and then DIAD, 72 h, RT; (iii) 1-(3-azidopropyl)-1,2-dicarba-closo-dodecaborane
(4), CuSO4·5H2O, sodium ascorbate, THF/H2O, 3 h, 35 ◦C (for 15); 1-(3-azidopropyl)-1,7-dicarba-
closo-dodecaborane (5), CuSO4·5H2O, sodium ascorbate, THF/H2O, 4 h, 35 ◦C (for 16); (iv) N,N-
dimethylethylenediamine, EtOH, 1 h, 35 ◦C, and then 1 h, 45 ◦C (for 17 and 19); N-(2-amino-
ethyl)pyrrolidine, EtOH, 1 h, 35 ◦C, and then 1–3 h, 45 ◦C (for 18 and 20). The yields of the com-
pounds are given in parentheses.
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synthesis of compounds 32, 35, and 36 modified with an ortho-/meta-carborane cluster was 

Scheme 3. Synthesis of conjugates 31–36 via reductive amination: Reagents and Conditions:
(i) N,N-dimethylethylenediamine, EtOH, 1 h, 35 ◦C, and then 1 h, 45 ◦C (for 21); N-(2-amino-
ethyl)pyrrolidine, EtOH, 1 h, 35 ◦C, and then 1 h, 45 ◦C (for 22); (ii) 2-(1,2-dicarba-closo-dodeca-
boran-1-yl)ethanal (23), THF, 24 h, reflux (for 25, 27, and 28); 2-(1,7-dicarba-closo-dodecaboran-1-
yl)ethanal (24), THF, 24 h, reflux (for 26); 2-(1,7-dicarba-closo-dodecaboran-1-yl)ethanal (24), MeOH,
24 h, reflux (for 29, 30); (iii) NaBH3CN, 24 h, RT, and then HCl, 1 h, RT. The yields of the compounds
are given in parentheses.
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Briefly, 3-amino-N-[2-(dimethylamino)ethyl]-1,8-naphthalimide (21) or 3-amino-N-
[2-(N-pyrrolidinyl)ethyl]-1,8-naphthalimide (22) with 3-(1,2-dicarba- closo-dodecaboran-
1-yl)propionic acid (37) [34] or 3-(1,7-dicarba-closo-dodeca- boran-1-yl)propionic acid
(38) [35] was dissolved in anhydrous CH2Cl2, and then anhydrous benzotriazol-1-yl-
oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) and (trimethylamine) TEA
were added to the solution. After the reaction, the crude products were purified twice by
column silica gel chromatography, followed by which conjugates 39–42 were obtained as a
white solid in moderate or good yield as follows: 54% (39), 66% (40), 55% (41), and 49%
(42). The structure, purity, and homogeneity of these compounds were confirmed by 1H-,
13C-, and 11B-NMR, FT-IR, MS, RP-HPLC (Figures S130–S158 (ESI)), and TLC. An alter-
native method for synthesizing compounds 39–42 was developed using N-succinimidyl
active esters containing carborane clusters [36]. However, the products were obtained after
4–10 days at 37 ◦C with the maximum yield of 39%. Therefore, this method was not
included in the Materials and Methods section in the paper.

2.1.2. X-ray Structural Analysis

Each crystal structure contains one molecule of carborane–naphthalimide conjugate in
the asymmetric unit. In 39, this unit also contains one molecule of water, while in 41 the unit
has two water molecules (Figure 2). The water molecules are well defined in the electron
density maps and participate in the hydrogen-bonding networks. In the case of 41, the two
water molecules are involved in linking the NH group of one molecule with the N atom
of the dimethylamine group from a neighboring molecule, and with the carbonyl oxygen
atoms of another neighboring molecule. In the case of compound 39, the single water
molecule links the NH group of one molecule with the dimethylamine group of another
molecule, while the carbonyl oxygen takes part in hydrogen bond formation with the CH
group of the carborane cluster of yet another molecule (Figure 3). The donor–acceptor
distance of the latter is 3.12 Å, which indicates that this is a relatively strong bond for a
carbon atom acting as a donor. Our earlier studies have shown that carborane groups can
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participate in weak H-bonding interactions [37], and it was observed that the C–H group of
free carboranes is acidic in nature [38]. In both crystal structures, the mitonafide moieties
were found to exhibit ring stacking, while the carborane clusters formed their own zones
in the crystal lattice.

In compound 41, the aromatic interactions are more extensive and the carborane
clusters also interact extensively with one another, whereas in 39 the division is less clear
because the carborane clusters are involved in H-bonding.
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Figure 3. Intermolecular interactions seen in the crystal structure of 39. Hydrogen bonds are indicated
by dotted lines, and hydrogen donor–acceptor distances are shown in Å. The three molecules of
carborane–naphthalimide conjugate are distinguished by distinct colors of carbon atoms in different
shades of gray.

2.2. Biological Investigation
2.2.1. In Vitro Cytotoxic Activity

The obtained compounds were investigated for in vitro antitumor activity by examin-
ing their cytotoxic effects using the MTT tetrazolium dye assay [39,40] against the human
cancer cell line HepG2 established from hepatocellular carcinoma. IC50 refers to the drug
concentration (µM) required to inhibit cell growth by 50%. The IC50 values determined for
the synthesized compounds are summarized in Table 1.
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Table 1. Cellular cytotoxic activity of compounds 6–11, 15–20, 31–36, and 39–42.

Compound IC50
a [µM]

6 115.38 ± 1.84
7 103.78 ± 1.16
8 4.33 ± 0.82
9 3.10 ± 0.42

10 8.02 ± 0.46
11 4.79 ± 1.36
15 67.78 ± 2.32
16 61.47 ± 2.33
17 9.68 ± 2.00
18 14.85 ± 0.86
19 14.30 ± 2.88
20 11.89 ± 0.48
31 53.09 ± 3.68
32 40.81 ± 1.67
33 4.77 ± 1.89
34 8.44 ± 1.70
35 8.65 ± 0.10
36 5.63 ± 0.16
39 10.63 ± 2.69
40 12.59 ± 0.68
41 10.38 ± 0.57
42 6.17 ± 1.21

a Compound concentration required to; inhibit tumor cell growth by 50%; Mitonafide IC50 < 1 [20]; Pinafide
IC50 = 1.23 ± 0.15 [20].

Generally, naphthalimides modified with carboranes (8–11, 17–20, 33–36, 39–42) ex-
hibited more cytotoxicity than naphthalic anhydrides containing carborane clusters (6, 7,
15, 16, 31, and 32). A comparison analysis of the naphthalimides in the series in terms
of their activity revealed that conjugates 8–11 synthesized via click reaction (triazole ring
attached directly to the heteroaromatic system) were the most cytotoxic than the modi-
fied naphthalimides that were obtained using click reaction (17–20, triazole ring attached
through an oxygen atom to the heteroaromatic system), reductive amination (33–36), or
amidation (39–42). The pinafide analog containing ortho-carborane 9 was identified to
be the most cytotoxic to the tested tumor cell line at a concentration as low as 3.10 µM.
The pinafide analog 11 containing meta-carborane was slightly less cytotoxic with an IC50
value of 4.79 µM. The mitonafide analog modified with ortho-carborane 8 (IC50 = 4.33 µM)
showed a moderately lower cytotoxic activity compared to compound 9, but the highest
activity among the mitonafide analogs modified with a carborane cluster (10, 17, 19, 35, 39,
41). It is worth mentioning that compounds 8 and 9 modified with ortho-carborane and
compound 11 modified with meta-carborane were more active than naphthalimides bearing
ortho- or meta-carborane at the N-imide position (5.95 and 7.84 µM, respectively) [20].

Due to the presence of an additional oxygen atom in their structure, in comparison to
conjugates 8–11, modified naphthalimides 17–20 have showed significantly lower cytotoxic
activity with an IC50 of 9.68–14.85 µM, with the highest value determined for mitonafide
analog 17 bearing an ortho-carborane.

Naphthalimide–carborane conjugates 33–36 containing an alkane linker between the
amine group at position 3 of the ring and the carborane cluster showed higher cytotoxic
activity than conjugates 17–20, but slightly lower activity compared to 8–11. Mitonafide
analog bearing ortho-carborane 33 was the most active among the synthesized compounds,
with an IC50 value of 4.77 µM. Compounds 39–42 synthesized by amide bond formation
displayed lower cytotoxic activity than 33–36, because of the presence of a C=O group
between the amine group and the carborane cluster. Their cytotoxic activity was around
one to two times lower (IC50 = 6.77–12.59 µM) than compounds 33–36 (IC50 = 4.77–8.65 µM).
Naphthalic anhydrides 15, 16, 31, and 32 showed moderate cytotoxicity against HepG2
cells (IC50 = 40.81–67.78 µM), while 6 and 7 were not toxic (IC50 > 100 µM).
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2.2.2. Cell Cycle Analysis by Flow Cytometry

Cell cycle disorders such as phase arrest might be an important cause of inhibition
of cancer cell growth and consequently the loss of cell viability [41]. Previous research
showed that many drugs induced cell cycle arrest at the G2/M phase in cancer cells [42].
To reveal the mechanism behind the inhibitory effect of the synthesized compounds on
cellular viability, we sought to examine the cell cycle regulation. For this purpose, HepG2
cells were exposed to compounds 6 (115 µM), 7 (104 µM), 8 (4 µM), 9 (3 µM), 10 (8 µM),
11 (5 µM), 15 (68 µM), 16 (61 µM), 17 (10 µM), 18 (15 µM), 19 (14 µM), 20 (12 µM), 31 (53 µM),
32 (42 µM), 33 (5 µM), 34 (8 µM), 35 (9 µM), 36 (6 µM), 39 (11 µM), 40 (13 µM), 41 (10 µM),
and 42 (6 µM). The chosen concentration of each of these compounds corresponded to
the whole IC50 value. Mitonafide and pinafide were used as reference compounds in
this analysis. After exposure, HepG2 cells were examined by flow cytometry, and their
DNA content was measured by PI staining. Based on the DNA content, it was found that
compounds 6, 9, 10, 16–20, 33, 34, 40, and 41 exerted different effects on cell cycle than
mitonafide and pinafide (Figure 4 and Figure S159 (ESI)) which induced cell cycle arrest at
the S and G2M phases [20], respectively.
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Figure 4. Effect of compounds 6 (115 µM), 7 (104 µM), 8 (4 µM), 9 (3 µM), 10 (8 µM), 11 (5 µM),
15 (68 µM), 16 (61 µM), 17 (10 µM), 18 (15 µM), 19 (14 µM), 20 (12 µM), 31, (53 µM), 32 (42 µM),
33 (5 µM), 34 (8 µM), 35 (9 µM), 36 (6 µM), 39 (11 µM), 40 (13 µM), 41 (10 µM), and 42 (6 µM) on cell
cycle distribution in HepG2 cells. The cells were treated with these compounds at a concentration
corresponding to the previously estimated IC50 value. The graph presents the percentage of cells in
the G0/G1, S, and G2M phases, respectively. Data are presented as mean ± SD of three independent
experiments. Statistical significance is indicated by asterisks: (ns) p > 0.05, (*) p < 0.05, (**) p < 0.01,
(***) p < 0.001, and (****) p < 0.0001.

The tested compounds affected the cell cycle by increasing the percentage of the cells
in G0/G1 by up to 73.5% (compound 18) compared to the control (58.3%). Accumulation
of cells in this phase delayed the progression of the cell cycle and the beginning of the S
phase. Previous studies showed that naphthalimide derivatives that were modified with a
carborane or metallacarborane cluster at the N-imide position also caused cell cycle arrest
at the G0/G1 phase [20]. In this study, we found that conjugates 7, 8, 11, 15, 31, 32, 35,
36, 39, and 42 arrested the cell cycle in G2M, similar to pinafide, of which compound 42
increased the number of cells in this phase by up to 28.1%.

2.2.3. Oxidative Stress Measurement in HepG2 Cells by Flow Cytometry

To shed light on the mechanism responsible for the inhibitory effect of the compounds
on cellular viability, we examined their ability to induce the production of ROS. ROS pro-
duction has been proposed as one of the mechanisms by whicH-Naphthalimides and their
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derivatives induced cell cycle arrest and apoptosis on cancer cells, which was confirmed
by the flow cytometry analysis of oxidative stress induction [2].

To confirm whether ROS were involved in the induction of cell cycle arrest by com-
pound, the level of intracellular ROS was analyzed. HepG2 cells were cultured for 24 h
with compounds 6 (57.5 µM), 7 (52 µM), 8 (2 µM), 9 (1.5 µM), 10 (4 µM), 11 (2.5 µM),
15 (34 µM), 16 (30.7 µM), 17 (4.9 µM), 18 (7.5 µM), 19 (7.2 µM), 20 (6 µM), 32 (20.4 µM),
39 (5.3 µM), 40 (6.3 µM), 41 (5.2 µM), and 42 (3 µM) (Figure 5 and Figure S160 (ESI)). The
selected concentration of each compound corresponded to half of its IC50 value. Mitonafide
and pinafide were used as reference compounds in the analysis.
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Figure 5. ROS production in HepG2 cells after 24 h of incubation with compounds 6 (57.5 µM),
7 (52 µM), 8 (2 µM), 9 (1.5 µM), 10 (4 µM), 11 (2.5 µM), 15 (34 µM), 16 (30.7 µM), 17 (4.9 µM),
18 (7.5 µM), 19 (7.2 µM), 20 (6 µM), 32 (20.4 µM), 39 (5.3 µM), 40 (6.3 µM), 41 (5.2 µM), and 42 (3 µM).
The concentration chosen for each compound corresponded to half of its IC50 value. Intracellular ROS
production was measured by dual staining with H2DCFDA/PI. The intensity of DCF fluorescence
corresponded to the intracellular level of ROS in HepG2 cells. Mean fluorescence intensity was
measured by flow cytometry. Data are presented as mean ± SD of three independent experiments.
Statistical significance is indicated by asterisks: (ns) p > 0.05, (*) p < 0.05, (**) p < 0.01, (***) p < 0.001,
and (****) p < 0.0001.

The intracellular level of ROS was analyzed by dual staining with H2DCFDA/PI. DCF
green fluorescence was triggered in the presence of ROS proportional to the intensity of
oxidative stress. The most potent ROS inducer, among conjugates 6–11, 15–20, 32, 39–42,
was mitonafide. Conjugates 10, 18, 32, and 39 were less effective. Furthermore, compounds
9, 17, 20, and 40–42 were more promising compared to control.

2.2.4. Analysis of 8-oxo-dG in HepG2 Cells

As compounds 31 and 33–36 exhibited autofluorescence (Figure S161 (ESI)), the level
of intracellular ROS was measured by determining the content of 2′-deoxy-8-oxoguanosine
(8-oxo-dG) in the enzymatic DNA hydrolysates obtained from HepG2 cells treated with the
tested compounds. 2′-Deoxyguanosine is known to be the most susceptible to oxidation
among the four canonical nucleosides, and 8-oxo-dG is the major oxidation product in
DNA [43]. Under normal conditions, a genome has one 8-oxo-dG molecule per 105–106

guanosines, corresponding to thousands of 8-oxo-dG molecules per single cell. In this
study, the content of 8-oxo-dG was measured using HPLC-UV-ED. The number of 8-oxo-
dG molecules per 106 dG was calculated (Table 2). We found that all tested compounds
significantly elevated the number of 8-oxo-dG molecules compared to untreated control.
Moreover, treatment with compound 35 caused much higher oxidative disturbances in
DNA than mitonafide [20] resulting in almost four times higher number of 8-oxo-dG
molecules in the cells (107.34 ± 0.57 vs. 28.24 per 106 dG, respectively).
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Table 2. 8-Oxo-dG level in cellular DNA after treatment with compounds 31 and 33–36.

Compound 8-oxo-dG/106dG ± SD

Control 8.77 ± 0.02
31 31.77 ± 0.09
33 24.43 ± 0.02
34 29.43 ± 0.11
35 107.34 ± 0.57
36 25.33 ± 0.13

Mitonafide 28.24 ± 0.18 [20].

2.2.5. Apoptosis/Necrosis, Autophagy, and Ferroptosis Assays by Flow Cytometry

Apoptosis and necrosis are the two major processes leading to cell death. Of these,
the former is characterized by specific morphological and biochemical features including
chromatin condensation, cell shrinkage, activation of caspase, and the loss of mitochondrial
membrane potential [44]. It was found, that naphthalimide derivatives could induce cell
death through apoptosis in the tested HepG2 and Bel-7402 cells [45].

To investigate whether the tested compounds induced apoptosis in HepG2 cells,
we incubated the cells witH-Naphthalimide–carborane cluster conjugates for 24 h and
performed a flow cytometry analysis. The compounds that did not show autofluorescence
were analyzed by dual staining using YO-PRO-1/PI, while those showing strong green
autofluorescence (31, 33–36) were analyzed using Alexa Fluor 647 annexin V conjugate
staining. The concentration chosen for each compound corresponded to the whole IC50
values. Mitonafide and pinafide were tested as reference compounds in this analysis.

The results indicated that the conjugates 6, 7, 17, 19, 20, and 39–42 mainly promoted the
apoptosis mode of cell death (Figure 6A and Figure S162 (ESI); Table S1 (ESI)). Compounds
17, 19, 39, and 40 induced early apoptosis (expressed as a percentage of apoptotic cells), and
only a few late apoptotic cells were seen. Incubation with compounds 20 and 41 induced
mainly the early stages of apoptosis with a moderate level of late apoptosis (13.35% and
18.60%, respectively). Compounds 6, 7, and 42 more rapidly induced cell death, where
numerous cells underwent late apoptosis (42) and necrosis (6, 7).

Among the tested compounds, 31 and 33–36 were found to be apoptosis inducers.
Compounds 33, 35, and 36 displayed strong apoptotic properties, but compound 35 was
identified as the strongest proapoptotic promoter and induced apoptosis in nearly 70%
of the treated cells after 24 h (Figure 6B and Figure S163 (ESI)). This compound was also
found to be a very potent inducer of oxidative stress (Table 2).

Interestingly, some of the modified naphthalimides (8–11 and 18) did not exhibit
positive green fluorescence signal corresponding to apoptotic cells, although their applied
concentration corresponded to the whole IC50 value. To investigate whether these con-
jugates induced another type of regulated cell death (autophagy) in the tested HepG2
cells, we performed flow cytometry analysis using Green Detection Reagent that selectively
stained autophagic vacuoles. For a strong activation of positive signal of autophagy, HepG2
cells were incubated with rapamycin, a potent inhibitor of mTOR [46]. Autophagy plays
an important role in cellular homeostasis and disease pathogenesis and is also one of the
reasons for the inhibition of cell growth. Through this process, cytosolic components and
organelles are delivered to lysosomes for degradation. Small chemical molecules that have
the ability to modulate autophagy may have pharmacological value for the treatment of
various diseases [47].

It has been reported that the analog NPC-16 (naphthalimide–polyamine conjugate)
triggered both apoptosis and autophagy in HepG2 cells, and further autophagy facilitated
cellular apoptosis. Furthermore, mTOR signal pathway was involved in NPC-16-mediated
autophagy in HepG2 cells [45]. In this study, compounds 8–11 and 18 were detected
as potent activators of autophagy (Figure 6C and Figure S164 (ESI)). These conjugates
increased fluorescence by 26–37% compared to the control, with the highest increase
of fluorescence caused by conjugate 11, while rapamycin increased fluorescence by 24%.
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Autophagy typically precedes or occurs along with apoptosis. We found that the conjugates
tested as mediators in this study could promote or inhibit cell apoptosis in HepG2 cells at
their higher concentration or with extended incubation time.
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39 (11 µM), 40 (13 µM), 41 (10 µM), and 42 (6 µM) on cell death in HepG2 cells. The cells were treated with these compounds
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(***) p < 0.001, and (****) p < 0.0001.

Unexpectedly, we observed that modified naphthalimides 15, 16, and 32 generated
stronger than expected fluorescent signals during the apoptosis/necrosis analysis at a
concentration corresponding to their whole IC50 value. Compound 32 was detected as a
potent ROS inducer (Figure 5). Intense oxidative stress is a feature of ferroptosis, which is a
relatively recently discovered type of programmed cell death and is usually accompanied by
high iron accumulation and lipid peroxidation. Recent studies have shown that ferroptosis
is closely related to the pathophysiological processes of many diseases and plays an
important regulatory role in the development and progression of, for example, tumors,
neurological disorders, acute kidney injury, and ischemia/reperfusion [48]. Therefore,
we analyzed conjugates 15, 16, and 32 for their ability to induce ferroptosis. Cumene
peroxide was used as a potent inducer of lipid peroxidation (positive control). The rate
of lipid peroxidation was estimated using the reagent 581/591 C11 that localizes in the
membranes of live cells. On the basis of red and green fluorescence data obtained by
flow cytometry, we estimated the 590/510 ratio which is inversely proportional to the
amount of peroxided lipids. The tested modified naphthalimides caused lipid peroxidation
(Figure 6D and Figure S165 (ESI)), although the highest peroxidation rate, indicated by the
lowest 590/510 ratio, was found in the cells that were treated with conjugate 15.
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2.2.6. Fluorescence Imaging of Lysosomes

Lysosomes, which are one of the vital organelles, participate in many physiological
processes such as cell apoptosis, cell cycle progression, and supply of cellular energy. Recent
research suggests that lysosomal dysfunction is a characteristic of autoimmune disorders
and neurodegenerative diseases including lupus, rheumatoid arthritis, multiple sclerosis,
and Alzheimer’s and Parkinson’s disease [49]. Due to the acidic feature of lysosomes, a
series of lysosome-targeting probes of naphthalimide derivatives, in which the morpho-
line group is modified, have been designed and synthesized to enhance their targeting
effects to the lysosomes through electronic interactions [50]. Lysosome-targeting anticancer
agents based on naphthalimide derivatives are limited [51]. It was shown that N,N-bis(3-
aminopropyl)methylamine-bridged bis-naphthalimide derivatives exhibited fluorescence
imaging in lysosomes in HeLa cells [52]. Due to fluorescence selection of naphthalimide–
carborane conjugates (Figure S161 (ESI)), we studied the lysosome-targeting behavior and
imaging capacity of compounds 33, 34, and 36 by performing co-localization experiments
using a commercial lysosomal tracker (DND-99) as the co-localization agent. We observed
that the fluorescence of compounds 33, 34, and 36 (green panels) in the co-stained cells over-
lapped well with that of DND-99 (red panels), as supported by their merged images (right
panels) shown in Figure 7. This suggests that compounds 33, 34, and 36 can specifically
target the lysosomes of living cells with good cell membrane permeability.

2.2.7. Human Topoisomerase IIα Relaxation Assay

The substituted 1,8-naphthalimides can act as DNA intercalators stabilizing DNA–
topoisomerase II complexes. Their interaction with DNA disrupts the cleavage–relegation
equilibrium of Topo II, thus resulting in the formation of broken DNA strands [51,53].

Carborane cluster-modified naphthalic anhydrides (6, 7, 15, 16, 31, 32) and naphthalim-
ides (8–11, 17–20, 33–36, 39–42) were tested in the screening assay for human topoisomerase
IIα inhibitory activity, at a concentration of 100 µM (Figure S166 (ESI)). The inhibitory
activity, manifested as the presence of the supercoiled DNA fraction of pBR322 plasmid,
was observed for compound 7, and to some extent, for compound 6 (as the presence of a
separate band of supercoiled plasmid as well as a discrete smear below the relaxed DNA
fraction). Therefore, we subjected both compounds to further detailed analyses of inhibitory
potential within the concentration range of 25–200 µM. As expected, compound 6 demon-
strated relatively weak inhibitory effect on human topoisomerase IIα, with a maximum
inhibitory activity of 19.8% at 100 µM (at 200 µM the inhibitory activity of the compound
was slightly lower (14.5%) probably due to precipitation) (Figure 8A). Compound 7 acted
in a concentration-dependent manner, and the best inhibitory activity was detected at
100 and 200 µM (19% and 44% inhibition, respectively) (Figure 8B). Noteworthy was the
presence of a relatively significant amount of DNA in the gel wells, which increased in
proportion with the concentration of compound 7. One can assume that this fraction could
have been generated either by additional inhibition of the enzyme’s decatenation activity
or by the intercalation of the compound into a DNA helix leading to the formation of a
covalent complex between the DNA and the enzyme, which cannot migrate in the agarose
gel (no protein denaturant was added to the reaction) [54]. At the same time, a trapped
topoisomerase could not relax supercoiled plasmids and hence the decrease in enzyme’s
activity and the appearance of the supercoiled DNA band. The concentration-dependent
inhibitory activity of compound 7 suggests that the used concentration might not be suf-
ficient for the compound to intercalate into all plasmid molecules or that the binding of
compound to the DNA might be reversible, resulting in an incomplete inhibition of the
enzyme activity and the appearance of a relaxed DNA fraction. Considering that enzyme
inhibition can be determined as a sum of the amount of supercoiled DNA and the DNA
fraction trapped in the gel wells, we calculated 30% and 72% inhibition of topoisomerase
activity for compound 7 at the concentration of 100 and 200 µM, respectively, and an IC50
value (concentration that inhibits the activity of an enzyme by 50%) of 134 µM.
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Figure 7. Confocal microscopy analysis of the co-localization of compounds 33, 34, and 36. The analysis was carried out
after 1 and 24 h of treatment of the cells with compounds 33 (B), 34 (C) and 36 (D) at the final concentration corresponding to
the whole IC50 values. Untreated cells were used as a control (A). Panels with green fluorescence show the autofluorescence
of the investigated compounds (Ex/Em 488/500–600 nm), panels with red fluorescence show the autofluorescence of stained
lysosomes (Ex/Em 561/585–655 nm), and panels with blue fluorescence present nuclei labeling (Ex/Em 405/430–480 nm).
Merged images are shown in the right panels.
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Figure 8. Inhibition of the relaxation activity of human topoisomerase IIα in the presence of compounds 6 (A) and 7 (B) at
concentrations of 10, 25, 50, 100, and 200 µM. SC—supercoiled DNA.

2.3. Physicochemical Investigation with DNA

DNA melting is the process of separating the double-helical DNA into two single
strands by disrupting the stable hydrogen bonding and base stacking interactions [55]. The
melting temperature (Tm) of DNA is defined as the point at which half of the DNA strands
are in the double-helical state and the other half in a random-coil state [56]. DNA helix
melting is performed by measuring the absorbance of DNA at 260 nm as a function of
temperature. A large increase in Tm (3–8 ◦C) is observed only for the strong intercalation
type of interaction, whereas groove-binding interaction of small molecules with DNA
leads to insignificant amendment of Tm. In our study, we conducted an experiment to
monitor the changes in Tm for ct-DNA in the absence and presence of modified naph-
thalimides to understand the interaction between these compounds and ct-DNA (Table 3,
Figures S167–S171 (ESI)).

Thermal melting experiments showed that the studied compounds 9–11, 15–20, 32–36,
41, and 42 caused negligible stabilization of ct-DNA, while conjugates 6, 8, 39, and 40 caused
better DNA stabilization. In comparison to mitonafide and pinafide (Table 3, Figure S171
(ESI)), the conjugates rather excluded classical intercalation as a dominant binding mode,
which indicates a different mode of interaction with DNA.

Some of the modified anhydrides, 7 and 31, caused destabilization of ct-DNA. Drug-
induced destabilization of DNA helix represents a novel antitumor mechanism of action
and is associated with particular intercalation processes or postalkylation distortion of
DNA. DNA-destabilizing compounds are relatively rare and constitute a minor proportion
of DNA-interacting molecules (which primarily stabilize the double helix). Certain mono-
or bis-intercalators and DNA alkylating agents exhibit such DNA-destabilizing effects.
The formation of locally destabilized DNA portions could interfere with protein/DNA
recognition and thus potentially affect several crucial cellular processes, such as DNA
repair, replication, and transcription [57].

To better understand the interactions of DNA and modified naphthalimides, we
conducted circular dichroism (CD) measurements. CD is a powerful and reliable technique
to investigate the conformational changes in DNA morphology during interactions between
a small molecule and DNA. The CD spectra of the B-form DNA duplex generally display a
positive Cotton effect at 270 nm and a negative effect at approximately 250 nm, witH-Nearly
equal magnitudes of longwave positive bands and shortwave negative bands [58,59]. The
binding of a small, achiral molecule to a chiral DNA helix can result in induced CD signal
from the molecule.
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Table 3. ∆Tm of ct-DNA.

Compound ∆Tm [◦C]
Kb [M–1]

ct-DNA

6 1.50 2.00 ± 1.90 × 105

7 –2.17 7.88 ± 3.26 × 105

8 1.50 1.40 ± 1.04 × 105

9 0.83 3.58 ± 1.50 × 105

10 0.50 2.48 ± 1.44 × 105

11 0.50 7.20 ± 6.40 × 104

15 0.50 2.40 ± 1.0 × 104

16 0.50 1.92 ± 1.58 × 105

17 0.83 2.17 ± 1.10 × 105

18 –0.17 2.48 ± 0.62 × 105

19 0.17 3.88 ± 0.38 × 105

20 –0.17 3.12 ± 1.22 × 105

31 –1.17 nd
32 –0.83 nd
33 0.50 2.06 ± 1.80 × 105

34 0.50 1.62 ± 1.40 × 105

35 0.17 1.98 ± 1.58 × 105

36 0.17 2.20 ± 2.14 × 105

39 1.50 3.62 ± 1.10 × 105

40 1.17 6.60 ± 2.80 × 104

41 0.83 nd
42 –0.17 nd

Mitonafide 5.17 2.54 × 105

Pinafide 6.50 6.60 × 104

nd—not determined.

The CD spectrum of free ct-DNA showed a negative band at 248 nm due to polynu-
cleotide helicity and a positive band at 276 nm due to base stacking, thus confirming the
existence of ct-DNA in the right-band B-form [60]. As illustrated in Figure S172 (ESI),
treatment with mitonafide and pinafide caused a decrease in the negative peak and an
increase in the positive peak. In contrast, conjugates bearing boron cluster 6–11, 15–18,
20, 31, 32, and 34–36 did not cause any appreciable change in the CD spectra of ct-DNA
(Figures S173–S183 (ESI)) with increase in concentration. In the case of compounds 19,
33, 39, and 40–42, the positive and negative bands were perturbed by the presence of
these ligands (Figures S176, S178, S180 and S181 (ESI)). This suggests that the compounds,
especially 33 and 39, interact strongly with DNA but slightly weaker than mitonafide
and pinafide. Naphthalimides bearing boron clusters at the N-imide position also caused
negligible stabilization of ct-DNA which was confirmed by the thermal melting experiment
and CD spectra [20].

The interaction of naphthalimides containing carborane clusters was also studied
by UV–vis absorption titration to better understand the mode of interaction and binding
strength. Generally, bathochromic and hypochromic effects are observed in the absorption
spectra if the small molecules intercalate with DNA [61]. The spectral changes observed
in the electronic absorption of 6–11, 15–20, and 33–40 in the absence and presence of
ct-DNA are illustrated in Figures S184–S203 (ESI). Progressive addition of ct-DNA at
a concentration of 1.25–15 µM to a fixed amount of modified naphthalic anhydride or
naphthalimide concentration (20 µM) caused a decrease in absorbance for almost all the
tested compounds, with an exception of conjugate 6 for which an increase of absorbance
was observed. The most significant decrease in absorbance was recorded for conjugates 8,
10, 17–20, 39, and 40 with the low concentrations of ct-DNA (from 0 to 2.50 µM). However,
we did not observe a significant shift of absorption maxima and only a slight bathochromic
shift of about 2 nm was observed for compounds 16 and 39. This observation would rather
indicate the groove binding of modified naphthalimide with ct-DNA, since insignificant
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(or small) shift in absorption spectral behavior (i.e., λabs
max) is generally accepted as the

most probable consequence of groove binding [61]. On the other hand, the addition of
ct-DNA to mitonafide caused a small bathochromic shift, which is also confirmed in the
literature [62] (Figure S202 (ESI)). A quantitative rationalization of the drug–DNA binding
strength is important to evaluate the efficacy of a drug or a therapeutic agent. Therefore,
to compare the DNA binding strength of the tested molecules, we calculated the binding
constant Kb, as described in the Materials and Methods section.

In comparison with the available literature reports on intercalative binding of strong
intercalators such as ethidium bromide [62], we observed (Table 3) a lower binding con-
stant by one (6–10, 16–20, 33–39) or two orders (11, 15, 40) of magnitude. However, the
selected modified compounds (6–10, 16–20, 33–39) showed a similar Kb value compared
to mitonafide, and some of the tested compounds (11, 15, 40) revealed an analogous Kb
value to pinafide (Table 3). For conjugates 31, 32, 41, and 42, the Kb value could not be
determined due to the lack of noticeable changes in the UV spectra.

2.4. Similarity-Based Assessment of Property Profile

The concept of intermolecular guest–host recognition in the quantitative receptor-
independent structure–activity modeling (RI-QSAR) stems loosely from the straightforward
tenet of the substituent similarity [63]. In general, a congeneric series of molecules should
exhibit similar pharmacological profile because the interchangeable groups characterized
by similar size, shape, or electronic distribution are likely to induce similar effects on
binding affinities (neighbor behavior). Despite some limitations, the search for distance-
mediated similarity using a quantitative measure of the pairwise relatedness between two
molecules, each with multidimensional (mD) pool of attributes, contributes favorably to the
ligand-based SAR practice [64]. Comparative molecular field analysis (CoMFA) integrated
with computational chemistry as an in silico procedure has long been established in the
field of computer-assisted molecular design [65]. CoMFA specifies the molecular features
in the form of steric and/or electrostatic ligand patterns for superimposed molecules using
the spatial distribution of noncovalent areas evaluated over the lattice of points. Masking
the explicit shape information by the regularity of the cubic grid lattice allows translating
the structural data into spatially uniform maps of potential ligand–receptor interactions
(pharmacophore) [66].

We conducted a similarity-guided property space assessment for the ensemble of
carborane-containing conjugates using the principal component analysis (PCA). In addi-
tion, the enhancement of planar descriptor-driven projection with response data resulted
in a structure–activity landscape with a subtle picture of (dis)allowed structural adjust-
ment(s) potentially valid for molecular activities. Finally, CoMFA was employed in the
quantitative SAR ligand-based study to indicate the steric and/or electrostatic features of
the pharmacophore pattern.

We evaluated the similarity-driven property for the congeneric set of structurally
related naphthalimide–carborane conjugates using PCA on the pool of 2361 descriptors
retrieved from Dragon 6.0 program—constant or nearly constant values with a standard
deviation (SD) of <10−4 were erased a priori. The mD data were organized into a matrix
X22×2361 with rows and columns depicting molecules (objects) and descriptors (parameters),
respectively. The standardized matrix was compressed effectively using PCA because the
total variance described by the first three principal components (PCs) accounted for 82.87%,
indicating that the parameters were highly intercorrelated. We scrutinized the 3D space
defined by the first orthogonal components (PC1 vs. PC2 vs. PC3), which revealed
that carborane-based derivatives are basically clustered into four subgroups as shown
in Figure 9. As expected, the positional isomers (ortho-/meta-) in the borane cluster were
positioned together.
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Interestingly, the projection of the IC50 activity (expressed in the logarithmic scale) on
the PC1 vs. PC2 plane clearly indicated the diagonal separation of the active (pIC50 > 4.5)
and nonactive (pIC50 < 4.5) conjugates, as illustrated in Figure 10.
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principal component for Dragon descriptors with IC50 values in the logarithmic scale. Colors code
the numerical values of pIC50.

On the other hand, a similar tendency was not observed for the projection of objects
on the two-dimensional (PC1 vs. PC2) space that was color-coded by Lipinski’s Rule
of Five (Ro5) violations and molecular weights (MWs) accordingly. As a matter of fact,
it was found that almost half of the analyzed carborane-containing conjugates did not
strictly abide by Ro5 (Figure 11A) crossing the threshold value (MW ≤ 500) imposed on the
MW descriptor (Figure 11B). Obviously, the violation of any two of the ADMET-friendly
conditions reduces the probability of a compound to be orally bioavailable, whereas a good
drug-like score does not make a molecule a drug (and vice versa) [67].

The gold standard of SAR-driven procedures is based on the similarity tenet, where the
structural composition of chemicals influences their ADMET properties [68]. Despite the
far-fetching over-simplification, the similarity concept conjugated with biological response
is widely adopted in medicinal chemistry [69]. Conceptually, the pairwise descriptor-
based structural relatedness between two objects can be quantitatively determined as a
function of their common features, for instance using Tanimoto coefficient (Tc) calculated
for OpenBabel fingerprints. In this study, the distribution of this coefficient revealed a wide
structural diversity of the analyzed molecules (∆Tc ≈ 0.45) with the greatest frequencies
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recorded at 0.58 < Tc < 0.68, respectively, as depicted in Figure 12A. The lower values
of Tc in the deltoidal matrix T22×22, as shown in Figure 12B, indicated the structural
dissimilarities within the analyzed molecules, thus confirming our previous PCA findings
(Figure 9 or Figure 10).
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The conjugation of structural pairwise comparison with response affinity profile
results in a graphical map for systematically investigating the SAR trends in the form of
structure–activity landscape index (SALI) [70]. The specification of continuity areas and/or
activity cliffs is related to the availability of structurally similar compounds characterized by
noticeable variations in the biological response. In fact, even sparse sampling of the factual
chemical space can roughly determine the SAR areas with sharply nonuniform regions
(magic methyl phenomenon). A symmetrical SALI grayscaled heat map is presented in
Figure 13A, which shows that the studied molecules are sorted correspondingly to their
pIC50 values, with the legend representing the numerical SALI values.



Int. J. Mol. Sci. 2021, 22, 2772 21 of 43

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 21 of 44 
 

 

values of Tc in the deltoidal matrix T22×22, as shown in Figure 12B, indicated the structural 

dissimilarities within the analyzed molecules, thus confirming our previous PCA findings 

(Figure 9 or Figure 10). 

 

Figure 12. Distribution of Tc coefficients (A) and triangular matrix of Tanimoto coefficients (B) for 

carborane conjugates. 

The conjugation of structural pairwise comparison with response affinity profile re-

sults in a graphical map for systematically investigating the SAR trends in the form of 

structure–activity landscape index (SALI) [70]. The specification of continuity areas 

and/or activity cliffs is related to the availability of structurally similar compounds char-

acterized by noticeable variations in the biological response. In fact, even sparse sampling 

of the factual chemical space can roughly determine the SAR areas with sharply nonuni-

form regions (magic methyl phenomenon). A symmetrical SALI grayscaled heat map is 

presented in Figure 13A, which shows that the studied molecules are sorted correspond-

ingly to their pIC50 values, with the legend representing the numerical SALI values. 

 

Figure 13. Grayscaled SALI plot with compounds ordered by increasing pIC50 values (A) and 

neighboring plot for carborane-based molecules (B). 

Computationally, the structurally related molecules (e.g., positional stereoisomers, 

with T  1) are characterized by SALI  infinity; therefore, such values were replaced by 

the highest (brightly color-coded) value of SALI. The right lower corner of the SALI plane 

(or the symmetrically positioned upper left one) was occupied by the most active mole-

cules (11, 33, 8, 9) accompanied by nonactive molecules (6, 7, 15, 16), respectively. The 

bright SALI spots of the heat map in Figure 13A indicate that the specified molecules can 

potentially form activity cliff—Small structural variations are manifested via the demoli-

tion of activities. 

Figure 13. Grayscaled SALI plot with compounds ordered by increasing pIC50 values (A) and
neighboring plot for carborane-based molecules (B).

Computationally, the structurally related molecules (e.g., positional stereoisomers,
with T→ 1) are characterized by SALI→ infinity; therefore, such values were replaced
by the highest (brightly color-coded) value of SALI. The right lower corner of the SALI
plane (or the symmetrically positioned upper left one) was occupied by the most active
molecules (11, 33, 8, 9) accompanied by nonactive molecules (6, 7, 15, 16), respectively. The
bright SALI spots of the heat map in Figure 13A indicate that the specified molecules can
potentially form activity cliff—Small structural variations are manifested via the demolition
of activities.

Interestingly, the replacement of the anhydride-like fragment with the imide-based
motif exerted a noticeable impact on molecular potency as revealed by our comparison
between the most active and nonactive compounds (11, 33, 8 versus 6, 7, 15, 16), respectively.
Roughly speaking, it seems that the spatial arrangement of atoms/charges in the carborane
cage (positional isomers) does not explain the variations observed in the biological response
because nearly all active and nonactive molecules contain the same molecular borane-based
scaffold attached to the hydrocarbon –(CH2)3– chain. In Figure 13B, the pairwise disparities
of molecular activities are plotted against the structural (dis)similarities that are color-coded
according to the SALI values. It appears that the sampling of structurally similar molecular
pairs in the function of (un)favorable modifications (T ≥ 0.80 and ∆pIC50 ≥ 1) might be
necessary to investigate the sparsely populated regions (rough areas) of the numerical
SALI plane (the upper right corner in Figure 13B) and specify the SAR-related cliffs.

The modeling of biological/chemical effects of compounds and prediction of ADMET-
based properties are challenging for contemporary in silico protocols. 3D-QSAR strategies,
especially CoMFA, have greatly contributed to the specification of the spatial map of
ligand–receptor interactions, namely pharmacophore mapping [71]. In fact, CoMFA allows
constructing a spatially uniform 3D field around a series of superimposed molecules to
investigate the molecular environment (steric/electronic features). Hence, the “indirect”
ligand-based exploration of nonbinding fields (Lennard–Jones and Coulombic potentials)
results in a 3D arrangement of the pharmacophoric properties of compounds sharing the
common structural scaffold (chemotype). In this study, firstly, we subjected the superim-
posed training set of carborane-containing derivatives to CoMFA—the modeling of pIC50
data generated superior outcomes of the statistical metrics (q2

cv = 0.87) for the CH3+ atom
probe. Obviously, the robustness of the CoMFA model and its predictive power are strongly
related to the separation of training/test subsets [72]. On the other hand, there are no
specific rules for the selection of training/test subgroups; therefore, we chose the Duplex
algorithm to generate a 16:6 training/test (8, 15, 20, 31, 34, 41) population, respectively.
Only a slight deterioration of the model performance was observed (q2

cv = 0.83) with a
low standard error of prediction (s = 0.244) for five optimal components. Interestingly, the
results of CoMFA indicated that the steric field predominated the electrostatic one (fraction
0.82:0.18).
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In reality, the direct translation of pharmacophore-based pattern into the correspond-
ing pseudoreceptor model is not a trivial matter. In our study, the bundle of steric bulk
was specified as privileged zones contributing (un)favorably to the ligand-based CoMFA
model. Interestingly, the yellow 3D polyhedrals (Figure 14A) surrounding the carborane
cage and the hydrocarbon chain attached with the triazole ring depicted the spatial areas
marked as the unfavorable ones. In other words, the attachment of new substituents
in the specified areas might have a detrimental impact on the activity of the carborane-
containing compounds. On the other hand, the dominant green spheres in the close
proximity of the pyrrolidine ring (Figure 14A) suggested that modifications in this area
might favorably affect the carborane-based derivatives. It vaguely confirms the tendency
observed for the majority of the pyrrolidine-based and tertiary amine-like carborane con-
jugates; the activity profile can be roughly ranked as pIC50 (pyrrolidine) > pIC50 (tertiary
amine). It seems that a nearly constant arrangement of charges within the rigid carbo-
rane cluster for the entire set of investigated compounds resulted in a low contribution
of electrostatic potentials to the CoMFA model. The performance of this CoMFA model
is illustrated graphically in Figure 14B, which shows the plot of actual versus predicted
pIC50 values for the training (blue dots) and test (red dots) sets, respectively. The se-
lected test population covered uniformly the structural space of the analyzed compounds
as shown in Figure 14B. Due to the general lack of correlation between high q2

cv and
the predictive ability of mD-QSAR models, Golbraikh and Tropsha criterion (q2

cv > 0.5,

R2 > 0.6,
[

R2−R2
0

R2

]
< 0.1, 0.85 ≤ k ≤ 1.15) was applied for the CoMFA model, which re-

sulted in satisfactory statistical metrics: R2 = 0.89, R2
0 = 0.99,

[
R2−R2

0
R2

]
= −0.1, k = 0.99,

SDEP = 0.14, MAE = 0.12, q2
test = 0.88 [73].
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3. Materials and Methods
3.1. Chemistry

Most of the chemicals were obtained from the Acros Organics (Geel, Belgium) and
were used without further purification unless otherwise stated. Boron clusters were pur-
chased from KATCHEM spol. s.r.o. (Řež/Prague, Czech Republic). All experiments that
involved water-sensitive compounds were conducted under rigorously dry conditions and
under an argon atmosphere. Flash column chromatography was performed on silica gel
60 (230–400 mesh, Sigma-Aldrich, Steinheim, Germany). Rf refer to analytical TLC per-
formed using pre-coated silica gel 60 F254 plates purchased from Sigma-Aldric (Steinheim,
Germany) and developed in the solvent system indicated. Compounds were visualized by
use of UV light (254 nm) or a 0.5% acidic solution of PdCl2 in HCl/methanol by heating
with a heat gun for boron-containing derivatives. The yields are not optimized.
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1H-NMR, 13C-NMR, and 11B-NMR spectra were recorded on an Avance III 600 MHz
spectrometer (Bruker, Billerica, MA, USA,) equipped with a direct ATM probe. The spectra
for 1H, 13C, and 11B-Nuclei were recorded at 600.26 MHz, 150.94 MHz, and 192.59 MHz,
respectively. Deuterated solvents were used as standards. The following abbreviations
are used to denote the multiplicities: s = singlet, d = doublet, dd = doublet of doublets,
ddd = doublet of doublets of doublets, t = triplet, dt = doublet of triplets, q = quartet,
quin = quintet, bs = broad singlet, and m = multiplet. J values are given in Hz.

Mass spectra were recorded on a CombiFlash PurIon Model Eurus35 (Teledyne ISCO,
Lincoln, NE, USA). The ionization was achieved by atmospheric-pressure chemical ioniza-
tion (APCI) ionization in the positive ion mode (APCI+) and negative ion mode (APCI–).
The entire flow was directed to the APCI ion source operating in the positive ion mode. To-
tal ion chromatograms were recorded in the m/z range of 100 to 700. The vaporization and
capillary temperature were set at 250–400 and 200–300 ◦C, respectively. Capillary voltage
of 150 V, corona discharge of 10 µA. High-resolution mass spectra (HRMS) were obtained
on an Agilent 6546 LC/Q-TOF with ESI ion source spectrometer (Agilent Technologies, Inc.,
Santa Clara, CA, USA). The data are presented for the most abundant mass in the boron
distribution plot of the base peak (100%) and for the peak corresponding to the highest
m/z value with its relative abundance (%).

The theoretical molecular mass peaks of the compounds were calculated using the
“Show Analysis Window” option in the ChemDraw Ultra 12.0 program. The calculated
m/z corresponds to the average mass of the compounds consisting of natural isotopes.

Infrared absorption spectra (IR) were recorded using a Nicolet 6700 Fourier-transform
infrared spectrometer from Thermo Scientific (Runcorn, UK) equipped with an ETC Ev-
erGlo* source for the IR range, a Ge-on-KBr beam splitter, and a DLaTGS/KBr detector
with a smart orbit sampling compartment and diamond window. The samples were placed
directly on the diamond crystal, and pressure was added to make the surface of the sample
conform to the surface of the diamond crystal.

UV measurements were performed using a GBC Cintra10 UV-VIS spectrometer (Dan-
denong, Australia). The samples used for the UV experiment were dissolved in 95%
C2H5OH. The measurement was performed at ambient temperature.

RP-HPLC analysis was performed on a Hewlett-Packard 1050 system equipped with
a UV detector, and Hypersil Gold C18 column (4.6 × 250 mm, 5 µm particle size, Thermo
Scientific, Runcorn, UK). UV detection was conducted at λ = 340 nm. The flow rate was
1 mL min–1. All analyses were run at ambient temperature. The gradient elution was as
follows: gradient A—10 min from 30% to 55% A, 10 min from 55% to 90% A, and 10 min
from 90% to 30% A. Buffer A contained 0.1% HCOOH in CH3CN, and buffer B contained
0.1% HCOOH in H2O; gradient B—10 min from 0% to 25% A, 10 min from 25% to 60% A
and 10 min from 60% to 0% A. Buffer A contained 0.1% HCOOH in CH3CN, and buffer B
contained 0.1% HCOOH in H2O. Crystals of 39 and 41 were obtained by slow evaporation
from MeOH. X-ray diffraction measurements on 39 were carried out under cryogenic condi-
tions on beamline P13 equipped with PILATUS 6M detector, operated by EMBL Hamburg
at the PETRA III storage ring (DESY, Hamburg, Germany). The data were processed using
XDS [74], the structure was solved with SHELXT [75] and refined with SHELXL [76]. X-ray
diffraction measurements on 41 were carried out under cryogenic conditions on SuperNova
four-circle diffractometer (Oxford Diffraction, Abingdon, UK) equipped with a Cu anode
and Atlas CCD detector. The data were processed with CRYSALISPRO software (Rigaku
Oxford Diffraction) (Neu-Isenburg, Germany), the structure was solved with SHELXT and
refined with SHELXL programs, as above, via the Olex2 interface [77]. The refinement of
atomic positions was unrestrained except for hydrogen atoms which were maintained at
riding positions. Table S2 (ESI) summarises the crystallographic data.

3-Iodonaphthalic anhydride (1) was synthesized as described in the literature [78].
Compound 1 was additionally purified by column chromatography on silica gel (230–400
mesh) using as an eluent CH2Cl2 to afford product as white solid. 1-(3-Azidopropyl)-
1,2-dicarba-closo-dodecaborane (4) and 1-(3-azidopropyl)-1,7-dicarba- closo-dodecaborane
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(5) were synthesized as described in the literature [23]. 3-Aminonaphthalic anhydride
(12) was synthesized as described in the literature [26]. 3-Hydroxynaphthalic anhydride
(13) was obtained analogously to the synthesis of 4-hydroxy-naphthalic anhydride [79].
Compounds 3-amino-N-[2-(dimethylamino)ethyl]-1,8-naphthalimide (21) and 3-amino-N-
[2-(N-pyrrolidinyl)ethyl]-1,8-naphthalimide (22) were obtained in two steps: (1) synthesis
of 3-aminonaphthalic anhydride (12) [26], (2) reaction with the appropriate amine N,N-
dimethylethylenediamine (for compound 21) or N-(2-aminoethyl)pyrrolidine (for com-
pound 22) [27]. 2-(1,2-Dicarba-closo-dodecaboran-1-yl)ethanal (23) and 2-(1,7-dicarba-closo-
dodecaboran-1-yl)ethanal (24) were synthesized as described in the literature [28]. 3-(1,2-
Dicarba-closo-dodecaboran-1-yl)propionic acid (37) was synthesized as described in the
literature [34]. 3-(1,7-Dicarba-closo-dodecaboran-1-yl)propionic acid (38) was synthesized
as described in the literature [35].

3.1.1. Synthesis of 3-Ethynyl-1,8-Naphthalic Anhydride (3)

3-Iodo-1,8-naphthalic anhydride (1, 150 mg, 462.8 µmoL) was dissolved in anhydrous
DMF (6 mL) and added to CuI (18 mg, 94.5 µmoL), and Pd(PPh3)4 (54 mg, 46.7 µmoL). Next,
anhydrous TEA (130.5 µL, 93.6 µmoL) and trimethylsilylacetylene (263.5 µL, 1.85 mmoL)
were added. Reaction mixture was stirred for 2 h at 65 ◦C under an inert (Ar) atmo-
sphere. Subsequently, the solvents were evaporated to dryness under vacuum and 3-
trimethylsilylethynyl-1,8-naphthalic anhydride (2) was purified by column chromatog-
raphy on silica gel (230–400 mesh) using as an eluent CH2Cl2. Compound 2 (92 mg,
312.5 µmoL) was dissolved in mixture of TFA (5 mL), THF (800 µL) and H2O (800 µL).
Reaction mixture was stirred for 8 h at RT and solvents were evaporated. The residue was
dissolved in CH2Cl2 (5 mL) and solvent was evaporated. This was was repeated twice.
Crude product was purified by column chromatography on silica gel (230–400 mesh) using
as an eluent CH2Cl2 to afford product as white solid. Yield: 51 mg (50%). TLC (CHCl3):
Rf = 0.40; 1H-NMR (acetone-d6, 600.26 MHz): δ (ppm) = 8.68 (d, 1H, J = 1.5 Hz, Harom),
8.62 (dd, 1H, J = 7.3, 1.1 Hz, Harom), 8.56 (d, 1H, J = 8.3 Hz, Harom), 8.52 (d, 1H, J = 1.5 Hz,
Harom), 8.01 (dd, 1H, J = 8.3, 7.3 Hz, Harom), 4.04 (s, 1H, C-CH).

3.1.2. Synthesis of 3-Prop-2-yn-1-yloxy-1,8-Naphthalic Anhydride (14)

3-Hydroxy-1,8-naphthalic anhydride (13, 131.3 mg, 613 µmoL), propargyl alcohol
(38.9 µL, 674.5 µmoL) and PPh3 (193 mg, 735.8 µmoL) were suspended in anhydrous THF
(1.3 mL). Suspension was cooled to 0 ◦C under an inert atmosphere (Ar), and solution of
DIAD (144.5 µL, 735.8 µmoL) in anhydrous THF (5.3 mL) was added dropwise. Reaction
mixture was stirred for 72 h at RT. Subsequently, water (6.5 mL) was added, and THF
was evaporated. Crude product was extracted to CH2Cl2 (4 × 5 mL). The organic phase
was separated, dried over MgSO4, filtered, and evaporated to dryness. The residue was
purified by column chromatography on silica gel (230–400 mesh) using as an eluent CH2Cl2
to afford product as white solid. Yield: 108.4 mg (70%). TLC (CHCl3): Rf = 0.36; 1H-NMR
(acetone-d6, 600.26 MHz): δ (ppm) = 8.45–8.44 (m, 2H, 2Harom), 8.21 (d, 1H, J = 2.5 Hz,
Harom), 8.07 (d, 1H, J = 2.4 Hz, Harom), 7.90 (t, 1H, J = 7.8 Hz, Harom), 5.11 (d, 2H, J = 2.3 Hz,
O-CH2), 3.22 (t, 1H, J = 2.3 Hz, C-CH).

3.1.3. Synthesis of 1,8-Naphthalic Anhydride Derivatives 6, 7, and Naphthalimide
Derivatives 8–11 Modified with Carborane Clusters via Click Reactions

1-(3-Azidopropyl)-carborane (ortho-carborane (4) or meta-carborane, (5)) (1 eqiuv.) was
dissolved in mixture THF/H2O (2.5:1, v/v, 3 mL per 0.1 mmoL). 3-Ethynyl-1,8-naphthalic
anhydride (3) (1 equiv.), CuSO4 5H2O (0.05 equiv.) and sodium ascorbate (0.1 equiv.) were
added. Reaction mixture was stirred for 2–4 h under argon at 35 ◦C. The reaction was
quenched by evaporation of the solvents.

3-{1-[3-(1,2-Dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-triazol-4-yl}-1,8-naphthalic an-
hydride (6): white solid, yield 12.2 mg (60%). TLC (MeOH/CH2Cl2, 1:49, v/v): Rf = 0.28;
1H-NMR (DMSO, 600.26 MHz): δ (ppm) = 8.98 (d, 1H, J = 1.2 Hz, Harom), 8.96 (s, 1H,
CHtriazole), 8.90 (d, 1H, J = 1.5 Hz, Harom), 8.58 (d, 1H, J = 8.1 Hz, Harom), 8.50 (d, 1H, J = 7.2
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Hz, Harom), 7.93 (t, 1H, J = 7.8 Hz, Harom), 5.19 (br s, 1H, CHcarborane), 4.47 (t, 2H, J = 7.0 Hz,
CH2-triazole), 2.40–2.37 (m, 2H, CH2-carborane), 2.13–2.08 (m, 2H, CH2-CH2-CH2), 3.0–1.5
(m, 10H, B10H10); 13C-NMR (DMSO, 150.95 MHz): δ (ppm) = 160.49 (1C, C11), 160.46 (1C,
C12), 144.67 (1C, Ctriazole), 135.36–119.08 (11C, 10Carom, CHtriazole), 75.54 (1C, Ccarborane),
63.05 (1C, CHcarborane), 48.63 (1C, CH2-triazole), 33.53 (1C, CH2-carborane), 29.26 (1C,
CH2-CH2-CH2); 11B-NMR {1H BB} (DMSO, 192.59 MHz): δ (ppm) =−3.19 (s, 1B, B9),−6.19
(s, 1B, B12), −9.77 (s, 2B, B8, 10), −11.64–−13.11 (m, 6B, B3, 4, 5, 6, 7, 11); UV (99.8% EtOH):
λmax (nm) = 260, 266, 335, λmin = 296, λsh = 320, 367; FT-IR: νmax (cm−1) = 2964 (C-Haliphat),
2575 (B-H), 1770 (C=O), 1733 (C=O), 725 (B-B); RP-HPLC (gradient A): tR = 18.23 min;
APCI-MS: m/z: 450 [M + H]+, 492 [M + H + CH3CN]+, calcd for C19H23B10N3O3: 449.

3-{1-[3-(1,7-Dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-triazol-4-yl}-1,8-naphthalic an-
hydride (7): white solid, yield 38.5 mg, (48%). TLC (MeOH/CH2Cl2, 1:49, v/v): Rf = 0.43;
1H-NMR (DMSO, 600.26 MHz): δ (ppm) = 8.93 (s, 2H, Harom overlapped with CHtriazole),
8.86 (d, 1H, J = 1.4 Hz, Harom), 8.54 (d, 1H, J = 8.1 Hz, Harom), 8.46 (d, 1H, J = 6.7 Hz,
Harom), 7.90 (t, 1H, J = 7.7 Hz, Harom), 4.42 (t, 3H, J = 6.9 Hz, CH2-triazole), 4.05 (br s,
1H, CHcarborane), 2.10–2.07 (m, 2H, CH2-carborane), 2.00–1.97 (m, 2H, CH2-CH2-CH2),
3.0–1.5 (m, 10H, B10H10); 13C-NMR (DMSO, 150.95 MHz): δ (ppm) = 160.41 (1C, C11),
160.40 (1C, C12), 144.57 (1C, Ctriazole), 135.32–118.98 (11C, 10Carom, CHtriazole), 75.73 (1C,
Ccarborane), 56.30 (1C, CHcarborane), 48.75 (1C, CH2-triazole), 32.83 (1C, CH2-carborane),
29.92 (1C, CH2-CH2-CH2); 11B-NMR {1H BB} (DMSO, 192.59 MHz): δ (ppm) = −4.57 (s,
1B, B5), −11.09 (s, 5B, B4, 6, 9, 10, 12), −13.54 (s, 2B, B8, 11), −15.02 (s, 2B, B2, 3); UV
(99.8% EtOH): λmax (nm) = 261, 266, 334, λmin = 296, λsh = 234, 323, 365; FT-IR: νmax (cm−1)
= 2956 (C-Haliphat), 2594 (B-H), 1769 (C=O), 1741 (C=O), 724 (B-B); RP-HPLC (gradient
A): tR = 16.80 min; APCI-MS: m/z: 450 [M + H]+, 492 [M + H + CH3CN]+, calcd for
C19H23B10N3O3: 449.

3-{1-[3-(1,2-Dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-triazol-4-yl}-1,8-naphthalic an-
hydride (6) or 3-{1-[3-(1,7-dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-triazol-4-yl}-1,8-
naphthalic anhydride (7) (1 equiv.) was dissolved in absolute EtOH (10 mL per 0.45 mmoL)
and N,N-dimethylethylenediamine (1.1 equiv.) (for compound 8) or N-(2-aminoethyl)
pyrrolidine (1.1 equiv.) (for compound 9) was added. The reaction mixture was stirred
for 1 h at 35 ◦C and then for 1 h at 45 ◦C under an inert (Ar) atmosphere. Subsequently,
the solvent was evaporated to dryness under vacuum and crude product was purified by
column chromatography on silica gel (230–400 mesh) with a gradient of MeOH (0–10%) in
CH2Cl2. Additionally (only for compound 11), purified product was dissolved in CHCl3
(1 mL) and poured into hexane (5 mL). A precipitate was isolated by centrifugation.

N-{2-(Dimethylamino)ethyl]-3-[1-(1,2-dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-
triazol-4-yl}-1,8-naphthalimide (8): yellow solid, yield 9.5 mg (41%). TLC (MeOH/CH2Cl2,
1:9, v/v): Rf = 0.29; 1H-NMR (acetone-d6, 600.26 MHz): δ (ppm) = 8.86 (d, 1H, J =
1.6 Hz, Harom), 8.76 (d, 1H, J = 1.5 Hz, Harom), 8.69 (s, 1H, CHtriazole), 8.45 (dd, 1H,
J = 7.2, 1.1 Hz, Harom), 8.37 (d, 1H, 8.2 Hz, Harom), 7.83 (dd, 1H, J = 8.1, 7.3 Hz, Harom),
4.73 (br s, 1H, CHcarborane), 4.61 (t, 2H, J = 6.8 Hz, CH2-triazole), 4.28 (t, 2H, J = 6.9 Hz,
CH2-N(CO)2), 2.67 (t, 2H, J = 6.9 Hz, CH2-N(CH3)2), 2.58–2.55 (m, 2H, CH2-carborane),
2.33–2.30 (m, 8H, N(CH3)2 overlapped with CH2-CH2-CH2), 3.0–1.5 (m, 10H, B10H10);
13C-NMR (acetone-d6, 150.95 MHz): δ (ppm) = 164.60 (1C, C11), 164.54 (1C, C12), 146.82
(1C, Ctriazole), 133.26–123.84 (11C, 10Carom, CHtriazole), 76.54 (1C, Ccarborane), 63.82 (1C,
CHcarborane), 57.95 (1C, CH2-N(CH3)2), 50.13 (1C, CH2-triazole), 46.14 (2C, 2 × CH3), 38.92
(1C, CH2-N(CO)2), 35.55 (1C, CH2-carborane), 30.89 (1C, CH2-CH2-CH2); 11B-NMR {1H
BB} (acetone-d6, 192.59 MHz): δ (ppm) = −2.80 (s, 1B, B9), −5.95 (s, 1B, B12), −9.59 (s, 2B,
B8, 10), −11.53–−11.80 (m, 4B, B3, 4, 5, 6), −12.98 (s, 2B, B7, 11); UV (99.8% EtOH): λmax
(nm) = 257, 338, λmin = 295, λsh = 231, 321, 372; FT-IR: νmax (cm−1) = 2942 (C-Haliphat), 2574
(B-H), 1698 (C=O),1656 (C=O), 722 (B-B); RP-HPLC (gradient B): tR = 22.28 min; APCI-MS:
m/z: 520 [M+H]+, calcd for C23H33B10N5O2 = 519; HRMS (ESI+) 520.3867 [M + H]+, calcd
for C23H33B10N5O2 = 520.3711 [M + H]+.
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N-[2-(N-Pyrrolidinyl)ethyl]-3-[1-(1,2-dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-
triazol-4-yl}-1,8-naphthalimide (9): yellow solid, yield 14.3 mg (59%). TLC (MeOH/CH2Cl2,
1:9, v/v): Rf = 0.27; 1H-NMR (acetone-d6, 600.26 MHz): δ (ppm) = 8.84 (d, 1H, J = 1.5 Hz,
Harom), 8.74 (s, 1H, Harom), 8.68 (s, 1H, CHtriazole), 8.44 (d, 1H, J = 7.2, Hz, Harom), 8.34 (d,
1H, J = 8.2 Hz, Harom), 7.81 (t, 1H, J = 7.8 Hz, Harom), 4.73 (br s, 1H, CHcarborane), 4.60 (dd,
2H, J = 8.3, 5.4 Hz, CH2-triazole), 4.33 (t, 2H, J = 6.8 Hz, CH2-N(CO)2), 2.95 (t, 2H, J = 6.8 Hz,
CH2-pyrrolidine), 2.79 (br s, 4H, N-CH2pyrrolidine-CH2), 2.58–2.56 (m, 2H, CH2-carborane),
2.34–2.28 (m, 2H CH2-CH2-CH2), 1.80 (br s, 4H, CH2-CH2pyrrolidine-CH2), 3.0–1.5 (m, 10H,
B10H10); 13C-NMR (acetone-d6, 150.95 MHz): δ (ppm) = 164.46 (1C, C11), 164.40 (1C, C12),
146.60 (1C, Ctriazole), 134.95–122.81 (10C, 10Carom, CHtriazole), 76.36 (10C, Ccarborane), 63.64
(1C, CHcarborane), 54.93 (1C, N-CH2pyrrolidine-CH2), 54.23 (1C, CH2-pyrrolidine), 49.94 (1C,
CH2-triazole), 39.41 (1C, CH2-N(CO)2), 35.36 (1C, CH2-carborane), 30.68 (1C, CH2-CH2-
CH2), 24.29 (1C, CH2-CH2pyrrolidine-CH2); 11B-NMR {1H BB} (acetone-d6, 192.59 MHz): δ
(ppm) = −2.80 (s, 1B, B9), −5.95 (s, 1B, B12), −9.60 (s, 2B, B8, 10), −11.54 (s, 4B, B3, 4, 5,
6), −13.03 (s, 2B, B7, 11); UV (99.8% EtOH): λmax = 257, 338 nm, λmin = 296 nm, λsh = 238,
323, 372 nm; FT-IR: νmax (cm−1) = 2960 (C-Haliphat), 2579 (B-H),1698 (C=O), 1659 (C=O),
723 (B-B), RP-HPLC (gradient B): tR = 21.84 min; APCI-MS: m/z: 547 [M + H]+, calcd for
C25H35B10N5O2 = 546.

N-{2-(Dimethylamino)ethyl]-3-[1-(1,7-dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-
triazol-4-yl}-1,8-naphthalimide (10): yellow solid. Yield: 19.3 mg (84%). TLC (MeOH/CH2Cl2,
1:9, v/v): Rf = 0.33; 1H-NMR (DMSO-d6, 600.26 MHz): δ (ppm) = 8.89 (s, 1H, CHtriazole),
8.85–8.83 (m, 2H, 2Harom), 8.45–8.41 (m, 2H, 2Harom), 7.84 (t, 1H, J = 7.7 Hz, Harom), 4.42
(t, 2H, J = 6.7 Hz, CH2-N(CO)2), 4.16 (t, 2H, J = 6.8 Hz, CH2-triazole), 4.05 (br s, 1H,
CHcarborane), 2.53 (t, 2H, J = 6.8 Hz, CH2-N(CH3)2), 2.22 (s, 6H, 2CH3), 2.09–2.07 (m,
2H, CH2-carborane), 1.99–1.97 (m, 2H, CH2-CH2-CH2), 3.0–1.5 (m, 10H, B10H10); 13C-
NMR (DMSO-d6, 150.95 MHz): δ (ppm) = 163.17 (1C, C11), 163.11 (1C, C12), 144.98 (1C,
Ctriazole), 134.25–121.97 (11C, 10Carom, CHtriazole), 75.74 (1C, Ccarborane), 56.42 (1C, CH2-
N(CH3)2), 56.30 (1C, CHcarborane), 48.72 (1C, CH2-triazole), 45.30 (2C, 2 × CH3), 37.58 (1C,
CH2-N(CO)2), 32.84 (1C, CH2-carborane), 29.95 (1C, CH2-CH2-CH2); 11B-NMR {1H BB}
(DMSO-d6, 192.59 MHz): δ (ppm) = −4.62 (s, 1B, B5), −11.11 (s, 5B, B4, 6, 9, 10, 12), −13.58
(s, 2B, B8, 11), −15.05 (s, 2B, B2, 3); UV (99.8% EtOH): λmax = 257, 339 nm, λmin = 2978 nm,
λsh = 234, 373 nm; FT-IR: νmax (cm−1) = 2953 (C-Haliphat), 2577 (B-H), 1698 (C=O), 1655
(C=O), 722 (B-B); RP-HPLC (gradient B): tR = 22.20 min; APCI-MS: m/z: 520 [M + H]+,
calcd for C23H33B10N5O2 = 519.

N-[2-(N-Pyrrolidinyl)ethyl]-3-[1-(1,7-dicarba-closo-dodecaborane-1-yl)propyl]-1H-1,2,3-
triazol-4-yl}-1,8-naphthalimide (11): white solid. Yield: 15 mg (55%). TLC (MeOH/CH2Cl2,
1:9, v/v): Rf = 0.34; 1H-NMR (CDCl3, 600.26 MHz): δ (ppm) = 8.83 (d, 1H, J = 1.5 Hz, Harom),
8.79 (d, 1H, J = 1,7 Hz, Harom), 8.54 (dd, 1H, J = 7.2, 0.8 Hz, Harom), 8.22 (d, 1H, J = 7.9 Hz,
Harom), 8.00 (s, 1H, CHtriazole), 7.74 (t, 1H, J = 7.7 Hz, Harom), 4.43 (t, 2H, J = 7.2 Hz, CH2-
N(CO)2), 4.40 (t, 2H, J = 6.2 Hz, CH2-triazole), 2.99 (br s, 2H, CH2-pyrrolidine), 2.93 (br
s, 1H, CHcarborane), 2.88 (br s, 4H, N-CH2pyrrolidine-CH2), 2.10–2.07 (m, 4H, CH2-CH2-CH2
overlapped with CH2-carborane), 1.88 (br s, 4H, CH2-CH2pyrrolidine-CH2), 3.0–1.5 (m, 10H,
B10H10); 13C-NMR (CDCl3, 150.95 MHz0): δ (ppm) = 164.18 (1C, C11), 164.15 (1C C12),
146.58 (1C, Ctriazole), 134.45–120.71 (11C, 10Carom, CHtriazole), 74.72 (1C, Ccarborane), 55.21
(1C, CHcarborane), 54.47 (1C, N-CH2pyrrolidine-CH2), 53.61 (1C, CH2-pyrrolidine), 49.80 (1C,
CH2-triazole), 38.70 (1C, CH2-N(CO)2), 33.83 (1C, CH2-carborane), 30.53 (1C, CH2-CH2-
CH2), 23.79 (1C, CH2-CH2pyrrolidine-CH2); 11B-NMR {1H BB} (CDCl3, 192.59 MHz): δ (ppm)
= −4.18 (s, 1B, B5), −9.62 (s, 1B, B12), −10.59–−10.98 (m, 4B, B4, 6, 9, 10), −13.45 (s,
2B, B8, 11), −15.32 (s, 2B, B2, 3); UV (99.8% EtOH): λmax = 257, 338 nm, λmin = 295 nm,
λsh = 233, 373 nm; FT-IR: νmax (cm−1) = 2956 (C-Haliphat), 2593 (B-H), 1698 (C=O), 1660
(C=O), 730 (B-B); RP-HPLC (gradient B): tR = 22.58 min; APCI-MS: m/z: 547 [M + H]+,
calcd for C25H35B10N5O2 = 546.
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3.1.4. Synthesis of 1,8-Naphthalic Anhydride Derivatives 15, 16, and Naphthalimide
Derivatives 17–20 Modified with Carborane Clusterc via Click Reactions

1-(3-Azidopropyl)-carborane (ortho-carborane (4) or meta-carborane (5)) (1 equiv.)
was dissolved in THF/H2O (2.4:1, v/v, 2.5 mL per 0.1 mmoL). 3-(Prop-2-yn-1-yloxy)-1,8-
naphthalic anhydride (14) (1 equiv.), CuSO4 5H2O (0.06 equiv.) and sodium ascorbate
(0.1 equiv.) were added. Reaction mixture was stirred for 3–4 h in 35 ◦C. For compound 15
after 1 h additional portion of CuSO4·5H2O (0.06 equiv.) and sodium ascorbate (0.1 equiv.)
were added. The reaction was quenched by evaporation of the solvents. The crude
compound was purified by column chromatography on silica gel (230–400 mesh) with a
gradient of MeOH (0–5%) in CH2Cl2 as the eluent to afford product.

3-{[1-(3-(1,2-Dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-triazol-4-yl]methoxy}-1,8-
naphthalic anhydride (15): white solid. Yield: 93.6 mg (74%). TLC (MeOH/CH2Cl2, 1:49,
v/v): Rf = 0.23; 1H-NMR (DMSO, 600.26 MHz): δ (ppm) = 8.41 (d, J = 7.7 Hz, 1H, Harom),
8.37 (dd, J = 7.2, 1.0 Hz, 1H, Harom), 8.31 (s, 1H, CHtriazole), 8.17 (d, J = 2.6 Hz, 1H, Harom),
8.12 (d, J = 2.6 Hz, 1H, Harom), 7.87 (dd, J = 8.1, 7.3 Hz, 1H, Harom), 5.44 (s, 2H, O-CH2-
triazole), 5.14 (br s, 1H, CHcarborane), 4.37 (t, J = 6.9 Hz, 2H, CH2-triazole), 2.28–2.25 (m,
2H, CH2-carborane), 2.01–1.96 (m, 2H, CH2-CH2-CH2), 3.0–1.5 (m, 10H, B10H10); 13C-NMR
(DMSO, 150.95 MHz): δ (ppm) = 160.48 (C11), 160.16 (C12), 156.37 (C3), 142.07 (Ctriazole),
134.05–115.85 (9Carom + CHtriazole), 75.42 (Ccarborane), 62.85 (CHcarborane), 61.97 (O-CH2-
triazole), 48.25 (CH2-triazole), 33.49 (CH2-carborane), 29.34 (CH2-CH2-CH2); 11B-NMR {1H
BB} (DMSO, 192.59 MHz): δ (ppm) =−3.25 (s, 1B, B9),−6.23 (s, 1B, B12),−9.85 (s, 2B, B8,10),
−11.76–−13.13 (m, 6B, B3,4,5,6,7,11); UV (99.8% EtOH): λmax = 236.5, 329.1, 371.7 nm, λmin
= 227.5, 281.7, 344.9 nm, λsh = 245.9, 314.6 nm; FT-IR: νmax (cm−1) = 2924 (C-Haliphat),
2579 (B-H), 1770 (C=O), 1732 (C=O), 724 (B-B); RP-HPLC (gradient A): tR = 17.61 min;
APCI-MS: m/z: 480 [M + H]+, 513 [M + H + MeOH]+, 522 [M + H + CH3CN]+, calcd for
C20H25B10N3O4 = 479.

3-{[1-(3-(1,7-Dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-triazol-4-yl]methoxy}-1,8-
naphthalic anhydride (16): white solid. Yield: 39 mg (52%). TLC (MeOH/CH2Cl2, 1:49,
v/v): Rf = 0.30; 1H-NMR (DMSO, 600.26 MHz): δ (ppm) = 8.41 (d, 1H, J = 8.3 Hz, Harom),
8.37 (d, 1H, J = 7.2 Hz, Harom), 8.30 (s, 1H, CHtriazole), 8.17 (d, 1H, J = 2.4 Hz, Harom), 8.12
(d, 1H, J = 2.4 Hz, Harom), 7.87 (dd, 1H, J = 8.1, 7.5 Hz, Harom), 5.44 (s, 2H, O-CH2-triazole),
4.33 (t, 2H, J = 6.7 Hz, CH2-triazole), 4.01 (br s, 1H, CHcarborane), 1.92–1.85 (m, 4H, CH2-
carborane overlapped with CH2-CH2-CH2), 3.0–1.5 (m, 10H, B10H10); 13C-NMR (DMSO,
150.95 MHz): δ (ppm) = 160.52 (1C, C11), 160.18 (1C, C12), 156.35 (1C, C3), 142.03 (1C,
Ctriazole), 134.07–115.87 (10C, 9Carom, CHtriazole), 75.62 (1C, Ccarborane), 61.94 (1C, O-CH2-
triazole), 56.26 (1C, CHcarborane), 48.39 (1C, CH2-triazole), 32.72 (1C, CH2-carborane), 30.05
(1C, CH2-CH2-CH2); 11B-NMR {1H BB} (DMSO, 192.59 MHz): δ (ppm) = −4.56 (s, 1B, B5),
−11.16 (s, 5B, B4, 6, 9, 10, 12), −13.61 (s, 2B, B8, 11), −15.15 (s, 2B, B2, 3); UV (99.8% EtOH):
λmax = 235, 328, 372 nm, λmin = 227, 282, 346 nm, λsh = 314, 356 nm; FT-IR: νmax (cm−1) =
2954 (C-Haliphat), 2596 (B-H), 1771 (C=O), 1733 (C=O), 725 (B-B); RP-HPLC (gradient A): tR
= 17.42 min; APCI-MS: m/z: 480 [M + H]+, 513 [M + H + MeOH]+, 522 [M + H + CH3CN]+,
calcd for C20H25B10N3O4 = 479.

3-{[1-(3-(1,2-Dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-triazol-4-yl]methoxy}-1,8-
naphthalic anhydride (15) or 3-{[1-(3-(1,7-dicarba-closo-dodecaborane-1-yl) propyl)-1H-1,2,3-
triazol-4-yl]methoxy}-1,8-naphthalic anhydride (16) (1 equiv.) was dissolved in absolute
EtOH (10 mL per 0.45 mmoL) and N,N-dimethylethylenediamine (1.1 equiv.) or N-(2-
aminoethyl)pyrrolidine (1.1 equiv.) was added. The reaction mixture was stirred for 1 h at
35 ◦C, then for 1 h at 45 ◦C, under an inert (Ar) atmosphere. For compound 20 additional
portion of N-(2-aminoethyl)pyrrolidine (0.6 equiv.) were added and reaction mixture was
stirred for 2 h in 45 ◦C. Subsequently, the solvent was evaporated to dryness under vacuum
and crude product was purified by column chromatography on silica gel (230–400 mesh)
with a gradient of MeOH (0–15%) in CH2Cl2. Additionally (for compound 18 and 20),
purified product was dissolved in CHCl3 (0.5–1 mL) and poured into hexane (5–8 mL). A
precipitate was isolated by centrifugation.
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N-[2-(Dimethylamino)ethyl]-3-{[1-(3-(1,2-dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-
triazol-4-yl]metoxy}-1,8-naphthalimide (17): yellow solid. Yield: 14.4 mg (59%). TLC (MeOH/
CH2Cl2, 1:9, v/v): Rf = 0.23; 1H-NMR (DMSO, 600.26 MHz): δ (ppm) = 8.32–8.30 (m,
3H, 2Harom overlapped with CHtriazole), 8.07 (d, 1H, J = 2.5 Hz, Harom), 8.05 (d, 1H,
J = 2.5 Hz, Harom), 7.81 (t, 1H, J = 7.8 Hz, Harom), 5.41 (s, 2H, O-CH2-triazole), 5.13 (br
s, 1H, CHcarborane), 4.37 (t, 2H, J = 6.9 Hz, CH2-triazole), 4.15 (t, 2H, J = 6.9 Hz, CH2-
N(CO)2), 2.57 (t, 2H, J = 6.7 Hz, CH2-N(CH3)2), 2.26–2.23 (m, 8H, 2N(CH3)2 overlapped
with CH2-carborane), 2.00–1.95 (m, 2H, CH2-CH2-CH2), 3.0–1.5 (m, 10H, B10H10); 13C-
NMR (DMSO, 150.95 MHz): δ (ppm) = 163.36 (1C, C11), 162.91 (1C, C12), 156.27 (1C, C3),
142.24 (1C, Ctriazole), 133.02–114.70 (10C, 9Carom, CHtriazole), 75.41 (1C, Ccarborane), 62.84
(1C, CHcarborane), 61.84 (1C, O-CH2-triazole), 56.26 (1C, CH2-N(CH3)2), 48.25 (1C, CH2-
triazole), 45.10 (2C, 2 × CH3), 37.42 (1C, CH2-N(CO)2), 33.49 (1C, CH2-carborane), 29.35
(1C, CH2-CH2-CH2); 11B-NMR {1H BB} (DMSO, 192.59 MHz): δ (ppm) = −3.20 (s, 1B, B9),
−6.15 (s, 1B, B12), −9.82 (s, 2B, B8,10), −11.72–−13.07 (m, 6B, B3, 4, 5, 6, 7, 11); UV (99.8%
EtOH): λmax = 238, 334, 375 nm, λmin = 226, 280, 351 nm, λsh = 320 nm; FT-IR: νmax (cm−1)
= 2925 (C-Haliphat), 2594 (B-H), 1698 (C=O), 1658 (C=O), 723 (B-B); RP-HPLC (gradient B):
tR = 21.64 min; APCI-MS: m/z: 550 [M + H]+, calcd for C24H35B10N5O3 = 549.

N-[2-(N-Pyrrolidinyl)ethyl]-3-{[1-(3-(1,2-dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-
triazol-4-yl]metoxy}-1,8-naphthalimide (18): white solid. Yield: 22.7 mg (58%). TLC (MeOH/
CH2Cl2, 1:9, v/v): Rf = 0.24; 1H-NMR (CDCl3, 600.26 MHz): δ (ppm) = 8.40 (d, 1H, J = 7.3 Hz,
Harom), 8.22 (d, 1H, J = 2.6 Hz, Harom), 8.05 (d, 1H, J = 8.1 Hz, Harom), 7.69 (s, 1H, CHtriazole),
7.67 (t, 1H, J = 7.5 Hz, Harom), 7.62 (d, 1H, J = 2.4 Hz, Harom), 5.39 (s, 2H, O-CH2-triazole),
4.38–4.35 (m, 4H, CH2-triazole overlapped with CH2-N(CO)2), 3.58 (s, 1H, CHcarborane), 2.90
(t, 2H, J = 7.1 Hz, CH2-pyrrolidine), 2.77 (br s, 4H, N-CH2pyrrolidine-CH2), 2.25–2.22 (m, 2H,
CH2-carborane), 2.16–2.13 (CH2-CH2-CH2), 1.83 (m, 2H, CH2-CH2pyrrolidine-CH2), 3.0–1.5
(m, 10H, B10H10); 13C-NMR (CDCl3, 150.95 MHz): δ (ppm) = 164.22 (1C, C11), 163.85 (1C,
C12), 156.76 (1C, C3), 143.91 (1C, Ctriazole), 133.23–114.58 (10C, 9Carom, CHtriazole), 73.77 (1C,
Ccarborane), 62.68 (1C, O-CH2-triazole), 61.78 (1C, CHcarborane), 54.50 (1C, N-CH2pyrrolidine-
CH2), 53.71 (1C, CH2-pyrrolidine), 49.28 (1C, CH2-triazole), 38.99 (1C, CH2-N(CO)2), 35.08
(1C, CH2-carborane), 29.81 (1C, CH2-CH2-CH2), 23.77 (1C, CH2-CH2pyrrolidine-CH2); 11B-
NMR {1H BB} (CDCl3, 192.59 MHz): δ (ppm) = −2.15 (s, 1B, B9), −5.45 (s, 1B, B12), −9.17
(s, 2B, B8, 10), −11.86–−12.97 (m, 6B, B3, 4, 5, 6, 7, 11); UV (99.8% EtOH): λmax = 239, 335,
374 nm, λmin = 225, 280, 352 nm, λsh = 318 nm; FT-IR: νmax (cm−1) = 2926 (C-Haliphat), 2578
(B-H), 1698 (C=O), 1659 (C=O), 723 (B-B); RP-HPLC (gradient B): tR = 21.87 min; APCI-MS:
m/z: 577 [M + H]+, calcd for C26H37B10N5O3 = 576.

N-[2-(Dimethylamino)ethyl]-3-{[1-(3-(1,7-dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-
triazol-4-yl]metoxy}-1,8-naphthalimide (19): yellow solid. Yield: 16.3 mg (71%). TLC (MeOH/
CH2Cl2, 1:9, v/v): Rf = 0.39; 1H-NMR (CDCl3, 600.26 MHz): δ (ppm) = 8.43 (d, 1H, J = 7.2 Hz,
Harom), 8.26 (d, 1H, J = 2.0 Hz, Harom), 8.08 (d, 1H, J = 8.1 Hz, Harom), 7.69–7.64 (m, 3H,
2Harom overlapped with CHtriazole), 5.41 (s, 2H, O-CH2-triazole), 4.35 (t, 2H, J = 6.7 Hz,
CH2-N(CO)2), 4.30 (t, 2H, J = 6.1 Hz, CH2-triazole), 2.90 (br s, 1H, CHcarborane), 2.75 (br s,
2H, CH2-N(CH3)2), 2.42 (s, 6H, N(CH3)2), 1.98–1.97 (m, 4H, CH2-CH2-CH2 overlapped
with CH2-carborane), 3.0–1.5 (m, 10H, B10H10); 13C-NMR (CDCl3, 150.95 MHz): δ (ppm)
= 164.36 (1C, C11), 163.96 (1C, C12), 156.84 (1C, C3), 143.79 (1C, Ctriazole), 133.29–114.05
(10C, 9Carom, CHtriazole), 74.65 (1C, Ccarborane), 62.72 (1C, O-CH2-triazole), 56.91 (1C, CH2-
N(CH3)2), 55.19 (1C, CHcarborane), 49.64 (1C, CH2-triazole), 45.56 (2C, 2 × CH3), 37.95 (1C,
CH2-N(CO)2), 33.75 (1C, CH2-carborane), 30.45 (1C, CH2-CH2-CH2); 11B-NMR {1H BB}
(CDCl3, 192.59 MHz): δ (ppm) = −4.26 (s, 1B, B5), −9.68 (s, 1B, B12), −10.68–−11.06 (m, 4B,
B4, 6, 9, 10), −13.49 (s, 2B, B8, 11), −15.38 (s, 2B, B2, 3); UV (99.8% EtOH): λmax = 238, 334,
375 nm, λmin = 225, 283, 351 nm, λsh = 319 nm; FT-IR: νmax (cm−1) = 2936 (C-Haliphat), 2595
(B-H), 1698 (C=O), 1655 (C=O), 731 (B-B); RP-HPLC (gradient B): tR = 21.23 min; APCI-MS:
m/z: 550 [M + H]+, calcd for C24H35B10N5O3 = 549.

N-[2-(N-Pyrrolidinyl)ethyl]-3-{[1-(3-(1,7-dicarba-closo-dodecaborane-1-yl)propyl)-1H-1,2,3-
triazol-4-yl]metoxy}-1,8-naphthalimide (20): white solid. Yield: 28.3 mg (83%). TLC (MeOH/
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CH2Cl2, 1:9, v/v): Rf = 0.39; 1H-NMR (CDCl3, 600.26 MHz): δ (ppm) = 8.40 (d, 1H,
J = 7.2 Hz, Harom), 8.23 (d, 1H, J = 2.3 Hz, Harom), 8.05 (d, 1H, J = 8.1 Hz, Harom), 7.66–
7.63 (m, 3H, 2Harom overlapped with CHtriazole), 5.40 (s, 2H, O-CH2-triazole), 4.34 (t, 2H,
J = 7.2 Hz, CH2-N(CO)2), 4.30 (t, 2H, J = 6.4 Hz, CH2-triazole), 2.90 (br s, 1H, CHcarborane),
2.83 (t, 2H, J = 7.2 Hz, CH2-pyrrolidine), 2.70 (br s, 4H, N-CH2pyrrolidine-CH2), 2.01–1.95
(m, 4H, CH2-CH2-CH2 overlapped with CH2-carborane), 1.80 (br s, 4H, CH2-CH2pyrrolidine-
CH2), 3.0–1.5 (m, 10H, B10H10); 13C-NMR (CDCl3, 150.95 MHz): δ (ppm) = 164.22 (1C,
C11), 163.80 (1C, C12), 156.81 (1C, C3), 143.76 (1C, Ctriazole), 133.24–114.33 (10C, 9Carom,
CHtriazole), 74.64 (1C, Ccarborane), 62.67 (1C, O-CH2-triazole), 55.18 (1C, CHcarborane), 54.47
(1C, N-CH2pyrrolidine-CH2), 53.75 (1C, CH2-pyrrolidine), 49.61 (1C, CH2-triazole), 39.25
(1C, CH2-N(CO)2), 33.73 (1C, CH2-carborane), 30.43 (1C, CH2-CH2-CH2), 23.77 (1C, CH2-
CH2pyrrolidine-CH2); 11B-NMR {1H BB} (CDCl3, 192.59 MHz): δ (ppm) = −4.24 (s, 1B, B5),
−9.68 (s, 1B, B12), −10.64–−11.06 (m, 4B, B4, 6, 9, 10), −13.49 (s, 2B, B8, 11), −15.38 (s, 2B,
B2, 3); UV (99.8% EtOH): λmax = 238, 334, 375 nm, λmin = 226, 286, 351 nm, λsh = 319 nm;
FT-IR: νmax (cm−1) = 2950 (C-Haliphat), 2595 (B-H), 1698 (C=O), 1658 (C=O), 731 (B-B); RP-
HPLC (gradient B): tR = 21.32 min; APCI-MS: m/z: 577 [M+H]+, calcd for C26H37B10N5O3
= 576; HRMS (ESI+) 576.4156 [M + H]+, calcd for C26H37B10N5O3 = 576.3973 [M + H]+.

3.1.5. Synthesis of 1,8-Naphthalic Anhydride Derivatives 31, 32 Modified with Carborane
Cluster via Reductive Amination

3-Amino-1,8-naphthalic anhydride (12) (10–12.9 mg, 46.9–60.6 µmoL) was dissolved in
anhydrous THF (0.9 mL) and 2-(1,2-dicarba-closo-dodecaborae-1-yl)ethanal (23) (1.3 equiv.) or
2-(1,7-dicarba-closo-dodecaborae-1-yl)ethanal (24) (1.2 equiv.) was added. The reaction mixture
was stirred for 24 h at reflux under an inert (Ar) atmosphere. Next, to the Schiff base 25,
26 NaBH3CN (3 equiv.) was added and reaction mixture was stirred for 24 h at RT under
an inert (Ar) atmosphere. Subsequently, concentrated HCl (4–6 equiv.) was added and
the reaction was stirred for additional 1 h. Then the reaction mixture was diluted with
brine (2–4 mL) and crude product was extracted with CH2Cl2 (3 × 2–5 mL). The organic
phase was separated, dried over MgSO4, filtered, and evaporated to dryness. The residue
was purified by column chromatography on silica gel (230–400 mesh) using as an eluent
CH2Cl2 to afford product.

3-[(1,2-Dicarba-closo-dodecaborane-1-yl)ethylamino]-1,8-naphthalic anhydride (31): yellow
solid. Yield: 16.3 mg (62%). TLC (2× CH2Cl2): Rf = 0.33. 1H-NMR (DMSO-d6, 600.26 MHz):
δ (ppm) = 8.18 (d, 1H, J = 8.3 Hz, Harom), 8.11 (d, 1H, J = 7.2 Hz, Harom), 7.94 (d, 1H,
J = 2.4 Hz, Harom), 7.69 (t, 1H, J = 7.7 Hz, Harom), 7.30 (d, 1H, J = 2.3 Hz, Harom), 6.67
(t, 1H, J = 5.5 Hz, NH), 5.26 (br s, 1H, CHcarborane), 3.32 (signal of CH2-NH overlapped
with H2O), 2.62 (t, 2H, J = 7.5 Hz, CH2-carborane), 3.0–1.5 (m, 10H, B10H10); 13C-NMR
(DMSO-d6, 150.95 MHz): δ (ppm) = 160.88 (1C, C11), 160.79 (1C, C12), 146.75–109.25 (10C,
10Carom), 74.28 (1C, Ccarborane), 62.94 (1C, CHcarborane), 41.79 (1C, CH2-NH), 34.94 (1C,
CH2-carborane); 11B-NMR {1H BB} (CDCl3, 192.59 MHz): δ (ppm) =−3.05 (s, 1B, B9),−5.91
(s, 1B, B12), −9.76 (s, 2B, B8,10), −11.45–−13.06 (m, 6B, B3, 4, 5, 6, 7, 11); UV (99.8% EtOH):
λmax = 277, 336, 437 nm, λmin = 239, 305, 359 nm; FT-IR: νmax (cm−1) = 2926 (C-Haliphat),
2587 (B-H), 1763 (C=O), 1733 (C=O), 724 (B-B); RP-HPLC (gradient A): tR = 18.50 min;
APCI-MS: m/z: 384 [M + H]+, 416 [M+MeOH+H]+calcd for C16H21B10NO3 = 383.

3-[(1,7-Dicarba-closo-dodecaborane-1-yl)ethylamino]-1,8-naphthalic anhydride (32): yellow
solid. Yield: 9.8 mg (55%). TLC (2 × CH2Cl2): Rf = 0.38. 1H-NMR (DMSO-d6, 600.26 MHz):
δ (ppm) = 8.19 (d, 1H, J = 7.8 Hz, Harom), 8.11 (dd, 1H, J = 7.2, 0.9 Hz, Harom) 7.93 (d, 1H,
J = 2.4 Hz, Harom), 7.69 (dd, 1H, J = 8.2, 7.3 Hz, Harom), 7.27 (d, 1H, J = 2.3 Hz, Harom),
6.61 (t, 1H, J = 5.5 Hz, NH), 4.08 (br s, 1H, CHcarborane), 3.21 (dd, 2H, J = 13.1, 7.3 Hz,
CH2-NH), 2.31 (t, 2H, J = 7.5 Hz, CH2-carborane), 3.0–1.5 (m, 10H, B10H10); 13C-NMR
(DMSO-d6, 150.95 MHz): δ (ppm) = 160.92 (1C, C11), 160.82 (1C, C12), 146.87–109.09 (10C,
10Carom), 74.33 (1C, Ccarborane), 56.48 (1C, CHcarborane), 42.29 (1C, CH2-NH), 34.38 (1C, CH2-
carborane); 11B-NMR {1H BB} (DMSO-d6, 192.59MHz): δ (ppm) = −4.59 (s, 1B, B5), −11.11
(s, 5B, B4, 6, 9, 10, 12), −13.61–−15.04 (m, 4B, B2, 3, 8, 11); UV (99.8% EtOH): λmax = 279,
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336, 439 nm, λmin = 239, 305, 360 nm; FT-IR: νmax (cm−1) = 2926 (C-Haliphat), 2596 (B-H),
1762 (C=O), 1732 (C=O), 724 (B-B); RP-HPLC (gradient A): tR = 19.17 min; APCI-MS: m/z:
384 [M + H]+, 416 [M+MeOH+H]+calcd for C16H21B10NO3 = 383.

3.1.6. Synthesis of Naphthalimide Derivatives 33-36 Modified with Carborane Cluster via
Reductive Amination

3-Amino-N-[2-(dimethylamino)ethyl]-1,8-naphthalimide (21) (10–17.2 mg, 35.3–60.7 µmoL)
or 3-amino-N-[2-(N-pyrrolidinyl)ethyl]-1,8-naphthalimide (22) (11–32 mg, 35.6–103.6 µmoL)
was dissolved in anhydrous THF (14.9 mL per 1 mmoL) (for synthesis of compound
33, 34) or in anhydrous MeOH (14 mL per 1 mmoL) (for synthesis of compound 35, 36)
and 2-(1,2-dicarba-closo-dodecaborae-1-yl)ethanal (23) (1.3 equiv.) or 2-(1,7-dicarba-closo-
dodecaborae-1-yl)ethanal (24) (1.3 equiv.) was added. The reaction mixture was stirred for
24 h at reflux under an inert (Ar) atmosphere. Next, to the Schiff base 27–30 NaBH3CN
(3 equiv.) was added and reaction mixture was stirred for 24 h at RT under an inert (Ar)
atmosphere. Subsequently, concentrated HCl (5–6 equv.) was added and the reaction was
stirred for additional 1 h. Then, the reaction mixture was diluted with brine (57 mL per
1 mmoL) and crude product was extracted with CH2Cl2 (4 × 2–10 mL). The organic phase
was separated, dried over MgSO4, filtered, and evaporated to dryness. Crude product was
purified by column chromatography on silica gel (230–400 mesh) with a gradient of MeOH
(3–14%) in CH2Cl2 as the eluent to afford product.

N-[2-(Dimethylamino)ethyl]-3-[1,2-dicarba-closo-dodecaborane-1-yl)ethylamino]-1,8-naphthalimide
(33): yellow solid. Yield: 15.7 mg (57%). TLC (MeOH/CH2Cl2, 1:9, v/v): Rf = 0.30. 1H-
NMR (DMSO-d6, 600.26 MHz): δ (ppm) = 8.11–8.08 (m, 2H, 2Harom), 7.95 (d, 1H, J = 2.4 Hz,
Harom), 7.65 (dd, 1H, J = 8.1, 7.3 Hz, Harom), 7.23 (d, 1H, J = 2.4 Hz, Harom), 6.58 (t, 1H,
J = 5.7 Hz, NH), 5.27 (br s, 1H, CHcarborane), 4.12 (t, 2H, J = 6.9 Hz, CH2-N(CO)2), 3.31
(signal of CH2-NH overlapped with H2O), 2.62 (t, 2H, J = 7.5 Hz, CH2-carborane), 2.50
(signal of CH2-N(CH3)2 overlapped with DMSO), 2.21 (s, 6H, N(CH3)2), 3.0–1.5 (m, 10H,
B10H10); 13C-NMR (DMSO-d6, 150.95 MHz): δ (ppm) = 163.68 (1C, C11), 163.47 (1C,
C12), 146.55–108.34 (10C, 10Carom), 74.33 (1C, Ccarborane), 62.94 (1C, CHcarborane), 56.45 (1C,
CH2-N(CH3)2), 45.30 (2C, 2 × CH3), 41.83 (1C, CH2-NH), 37.45, (1C, CH2-N(CO)2), 34.99
(CH2carborane); 11B-NMR {1H BB} (DMSO-d6, 192.59MHz): δ (ppm) = −3.17 (s, 1B, B9),
−6.02 (s, 1B, B12), −9.82 (s, 2B, B8, 10), −11.62–−13.11 (m, 6B, B3, 4, 5, 6, 7, 11); UV (99.8%
EtOH): λmax = 256, 341, 438 nm, λmin = 236, 312, 366 nm, λsh = 280 nm; FT-IR: νmax (cm−1)
= 2973 (C-Haliphat), 2579 (B-H), 1704 (C=O),1651 (C=O), 721 (B-B); RP-HPLC (gradient B):
tR = 22.36 min; APCI-MS: m/z: 454 [M + H]+, calcd for C20H31B10N3O2 = 453.

N-[2-(N-Pyrrolidinyl)ethyl]-3-[1,2-dicarba-closo-dodecaborane-1-yl)ethylamino]-1,8-naphthalimide
(34): yellow solid. Yield: 23.5 mg (47%). TLC (MeOH/CH2Cl2, 1:9, v/v): Rf = 0.30. 1H-NMR
(DMSO-d6, 600.26 MHz): δ (ppm) = 8.12–8.09 (m, 2H, 2Harom), 7.96 (d, 1H, J = 2.4 Hz, Harom),
7.65 (t, 1H, J = 7.8 Hz, Harom), 7.24 (d, 1H, J = 2.3 Hz, Harom), 6.59 (t, 1H, J = 5.6 Hz, NH),
5.26 (br s, 1H, CHcarborane), 4.17 (t, 2H, J = 6.9 Hz, CH2-N(CO)2), 3.31 (signal of CH2-NH
overlapped with H2O), 2.78 (br s, 2H, CH2-pyrrolidine), 2.65–2.61 (m, 6H, N-CH2pyrrolidine-
CH2 overlapped with CH2-carborane), 1.70 (br s, 4H, CH2-CH2pyrrolidine-CH2), 3.0–1.5 (m,
10H, B10H10); 13C-NMR (DMSO-d6, 150.95 MHz): δ (ppm) = 163.77 (1C, C11), 163.55 (1C,
C12), 146.57–108.37 (10C, 10Carom), 74.35 (1C, Ccarborane), 62.95 (1C, CHcarborane), 53.75 (1C,
N-CH2pyrrolidine-CH2), 52.92 (1C, CH2-pyrrolidine), 41.83 (1C, CH2-NH), 38.21 (1C, CH2-
N(CO)2), 34.99 (1C, CH2-carborane), 23.11 (1C, CH2-CH2pyrrolidine-CH2); 11B-NMR {1H BB}
(DMSO-d6, 192.59MHz): δ (ppm) = −3.14 (s, 1B, B9), −6.10 (s, 1B, B12), −9.82–−13.12 (m,
8B, B3, 4, 5, 6, 7, 8, 10, 11); UV (99.8% EtOH): λmax = 25, 341, 439 nm, λmin = 236, 314.4,
366 nm, λsh = 280 nm; FT-IR: νmax (cm−1) = 2956 (C-Haliphat), 2576 (B-H), 1697 (C=O), 1656
(C=O), 722 (B-B), RP-HPLC (gradient B) tR = 22.83 min; APCI-MS: m/z: 480 [M + H]+, calcd
for C22H33B10N3O2 = 479.

N-[2-(Dimethylamino)ethyl]-3-[1,7-dicarba-closo-dodecaborane-1-yl)ethylamino]-1,8-naphthalimide
(35): yellow solid. Yield: 11.7 mg (73%). TLC (MeOH/CH2Cl2, 1:9, v/v): Rf = 0.33. 1H-
NMR (CDCl3, 600.26 MHz): δ (ppm) = 8.28 (dd, 1H, J = 7.2, 0.6 Hz, Harom), 7.92 (d, 1H,
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J = 8.1 Hz, Harom), 7.88 (d, 1H, J = 2.4 Hz, Harom), 7.60 (t, 1H, J = 7.7 Hz, Harom), 6.98 (d,
1H, J = 2.3 Hz, Harom), 4.35 (t, 2H, J = 7.0 Hz, CH2-N(CO)2), 4.24 (t, 1H, J = 5.7 Hz, NH),
3.31 (dd, 2H, J = 13.6, 7.2 Hz, CH2-NH), 2.98 (br s, 1H, CHcarborane), 2.75 (t, 2H, J = 6.7 Hz,
CH2-N(CH3)2), 2.43 (s, 6H, N(CH3)2), 2.33 (t, 2H, J = 7.5 Hz, CH2-carborane), 3.0–1.5 (m,
10H, B10H10); 13C-NMR (CDCl3, 150.95 MHz): δ (ppm) = 164.65 (1C, C11), 164.41 (1C, C12),
145.79–109.83 (10C, 10Carom), 73.48 (1C, Ccarborane), 57.02 (1C, CH2-N(CH3)2), 55.37 (1C,
CHcarborane), 45.66 (2C, 2 × CH3), 43.24 (1C, CH2-NH), 37.88, (1C, CH2-N(CO)2), 35.52
(1C, CH2-carborane); 11B-NMR {1H BB} (CDCl3, 192.59MHz): δ (ppm) = −4.14 (s, 1B, B5),
−9.43–−10.87 (m, 5B, B4, 6, 9, 10, 12), −13.37 (s, 2B, B8, 11), −15.19 (s, 2B, B2, 3); UV (99.8%
EtOH): λmax = 257, 341, 440 nm, λmin = 236, 314, 367 nm, λsh = 280 nm; FT-IR: νmax (cm−1)
= 2953 (C-Haliphat), 2598 (B-H), 1703 (C=O), 1655 (C=O), 729 (B-B); RP-HPLC O (gradient
B): tR = 22.52 min; APCI-MS: m/z: 454 [M+H]+, calcd for C20H31B10N3O2 = 453; HRMS
(ESI+) 454.3642 [M + H]+, calcd for C20H31B10N3O2 = 454.3493 [M + H]+.

N-[2-(N-Pyrrolidinyl)ethyl]-3-[1,7-dicarba-closo-dodecaborane-1-yl)ethylamino]-1,8-naphthalimide
(36): yellow solid. Yield: 12.5 mg (74%). TLC (MeOH/CH2Cl2, 1:9, v/v): Rf = 0.33.
1H-NMR (CDCl3, 600.26 MHz): δ (ppm) = 8.27 (d, 1H, J = 7.3 Hz, Harom), 7.91 (d, 1H,
J = 8.1 Hz, Harom), 7.87 (d, 1H, J = 2.3 Hz, Harom), 7.59 (t, 1H, J = 7.7 Hz, Harom), 6.95
(d, 1H, J = 2.3 Hz, Harom), 4.36 (t, 2H, J = 7.2 Hz, CH2-N(CO)2), 4.27 (t, 1H, J = 5.7 Hz,
NH), 3.30 (dd, 2H, J = 13.8, 7.2 Hz, CH2-NH), 2.98 (br s, 1H, CHcarborane), 2.86 (t, 2H,
J = 7.0 Hz, CH2-pyrrolidine), 2.73 (br s, 4H, N-CH2pyrrolidine-CH2), 2.32 (t, 2H, J = 7.5 Hz,
CH2-carborane), 1.82 (br s, 4H, CH2-CH2pyrrolidine-CH2), 3.0–1.5 (m, 10H, B10H10); 13C-
NMR (CDCl3, 150.95 MHz): δ (ppm) = 164.58 (1C, C11), 164.32 (1C, C12), 145.78–109.69 (10C,
10Carom), 73.47 (1C, Ccarborane), 55.36 (1C, CHcarborane), 54.50 (1C, N-CH2pyrrolidine-CH2),
53.87 (1C, CH2-pyrrolidine), 43.23 (1C, CH2-NH), 39.11, (1C, CH2-N(CO)2), 35.48 (1C, CH2-
carborane), 23.79 (1C, CH2-CH2pyrrolidine-CH2); 11B-NMR {1H BB} (CDCl3, 192.59MHz): δ
(ppm) = −4.18 (s, 1B, B5), −9.40 (s, 1B, B12), −10.52–−10.92 (m, 4B, B4, 6, 9, 10), −13.41
(s, 2B, B8, 11), −15.22 (s, 2B, B2, 3); UV (99.8% EtOH): λmax = 257, 341, 441 nm, λmin = 236,
313, 367 nm, λsh = 280 nm; FT-IR: νmax (cm−1) = 2961 (C-Haliphat), 2593 (B- H), 1697 (C=O),
1657 (C=O), 728 (B-B); RP-HPLC (gradient B): tR = 22.95 min; APCI-MS: m/z: 480 [M + H]+,
calcd for C22H33B10N3O2 = 479.

3.1.7. Synthesis of Naphthalimide Derivatives 39-42 Modified with Carborane Cluster via
Amidation Reaction

3-Amino-N-[2-(dimethylamino)ethyl]-1,8-naphthalimide (21) (29.4 mg, 104 µmoL) or 3-
amino-N-[2-(N-pyrrolidinyl)ethyl]-1,8-naphthalimide (22) (32.1 mg, 104 µmoL) and 3-(1,2-
dicarba-closo-dodecaboran-1-yl)propionic acid (37) (15 mg, 69.3 µmoL) or 3-(1,7-dicarba-closo-
dodecaboran-1-yl)propionic acid (38) (15 mg, 69.3 µmoL) were dissolved in anhydrous CH2Cl2
(0.6 mL), then anhydrous TEA (19.3 µL, 138.6 µmoL) and PyBOP (36 mg, 69.3 µmoL) were
added. The reaction mixture was stirred for 2–3 h at RT under an inert (Ar) atmosphere.
After that an additional portion of PyBOP (18 mg, 34.7 µmoL) was added and mixture
was stirred for 2–3 h at RT under an inert (Ar) atmosphere. The reaction mixture was
diluted with CH2Cl2 (2 mL) and washed witH-NaHCO3 (5% w/v, 6 × 1.5 mL) and water
(2 × 1.5 mL). The organic layer was dried over MgSO4, then the drying agent was filtered
off and washed with CH2Cl2. Filtrate and washings were combined, and evaporated to
dryness under a vacuum. The crude product was purified twice by column chromatog-
raphy on silica gel (230–400 mesh) using a gradient of MeOH (3–10%) in CH2Cl2 as an
eluting solvent system.

N-[2-(Dimethylamino)ethyl]-3-[(1,2-dicarba-closo-dodecaborane-1-yl)propanamido]-1,8-naphthalimide
(39): white solid. Yield: 18 mg (54%). TLC (MeOH/CH2Cl2, 1:9, v/v): Rf = 0.31. 1H-NMR
(acetone-d6, 600.26 MHz): δ (ppm) = 9.85 (s, 1H, NH), 8.69 (d, 1H, J = 2.1 Hz, Harom),
8.56 (d, 1H, J = 2.1 Hz, Harom), 8.38 (d, 1H, J = 7.2 Hz, Harom), 8.24 (d, 1H, J = 8.3 Hz,
Harom), 7.77 (t, 1H, J = 7.7 Hz, Harom), 4.75 (br s, 1H, CHcarborane), 4.24 (t, 2H, J = 7.0 Hz,
CH2-N(CO)2), 2.84 (br s, 4H, CH2-CONH overlapped with CH2-carborane), 2.59 (t, J =
7.0 Hz, 2H, CH2-N(CH3)2), 2.27 (s, 6H, N(CH3)2), 3.0–1.5 (m, 10H, B10H10); 13C-NMR
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(acetone-d6, 150.95 MHz): δ (ppm) = 170.29 (1C, Camide), 164.50 (1C, C11), 164.22 (1C,
C12), 138.74–121.91 (10C, 10Carom), 76.53 (1C, Ccarborane), 63.88 (1C, CHcarborane), 57.74 (1C,
CH2-N(CH3)2), 46.01 (2C, 2 × CH3), 38.81 (1C, CH2-N(CO)2), 36.72 (1C, CH2-CONH). 33.37
(1C, CH2-carborane); 11B-NMR {1H BB} (acetone-d6, 192.59MHz): δ (ppm) = −2.69 (s, 1B,
B9), −5.98 (s, 1B, B12), −9.67 (s, 2B, B8, 10), −11.55–−12.92 (s, 6B, B3, 4, 5, 6, 7, 11); UV
(99.8% EtOH): λmax = 253, 337, 375 nm, λmin = 293, 357 nm, λsh = 228 nm; FT-IR: νmax (cm−1)
= 2923 (C-Haliphat), 2581 (B-H), 1698 (C=O), 1656 (C=O), 722 (B-B); RP-HPLC (gradient B):
tR = 21.35 min; APCI-MS: m/z: 482 [M+H]+, calcd for C21H31B10N3O3 = 481.

N-[2-(N-Pyrrolidinyl)ethyl]-3-[(1,2-dicarba-closo-dodecaborane-1-yl)propanamido]-1,8-naphthalimide
(40): white solid. Yield: 23.2 mg (66%). TLC (MeOH/CH2Cl2, 1:9, v/v): Rf = 0.31. 1H-NMR
(DMSO-d6, 600.26 MHz): δ (ppm) = 10.64 (s, 1H, NH), 8.67 (d, 1H, J = 1.9 Hz, Harom), 8.60
(d, 1H, J = 1.9 Hz, Harom), 8.35–8.34 (m, 2H, 2Harom), 7.79 (t, 1H, J = 7.7 Hz, Harom), 5.24
(br s, 1H, CHcarborane), 4.18 (t, 2H, J = 7.0 Hz, CH2-N(CO)2), 2.76 (br s, 2H, CH2- pyrro-
lidine), 2.71–2.67 (m, 4H, CH2-CONH overlapped with CH2-carborane), 2.62 (br s, 4H,
N-CH2pyrrolidine-CH2), 1.69 (br s, 4H, CH2-CH2pyrrolidine-CH2), 3.0–1.5 (m, 10H, B10H10);
13C-NMR (DMSO-d6, 150.95 MHz): δ (ppm) = 169.32 (1C, Camide), 163.32 (1C, Cimide), 163.10
(1C, Cimide), 137.65–120.79 (10C, 10Carom), 75.66 (1C, Ccarborane), 63.47 (1C, CHcarborane),
53.69 (1C, N-CH2pyrrolidine-CH2), 52.85 (1C, CH2-pyrrolidine), 38.42 (1C, CH2-N(CO)2),
35.59 (1C, CH2-CONH). 31.88 (1C, CH2-carborane), 23.11 (1C, CH2-CH2pyrrolidine-CH2);
11B-NMR {1H BB} (DMSO-d6, 192.59 MHz): δ (ppm) = −3.10 (s, 1B, B9), −6.05 (s, 1B, B12),
−9.75 (s, 2B, B8, 10), −11.69–−12.92 (m, 6B, B3, 4, 5, 6, 7, 11); UV (99.8% EtOH): λmax = 254,
338, 375 nm, λmin = 293, 357 nm, λsh = 228 nm; FT-IR: νmax (cm−1) = 2922 (C-Haliphat), 2576
(B-H), 1704 (C=O), 1661 (C=O), 722 (B-B); RP-HPLC (gradient B): tR = 21.39 min; APCI-MS:
m/z: 508 [M+H]+, calcd for C23H33B10N3O3 = 507; HRMS (ESI+) 508.3761 [M+H]+, calcd
for C23H33B10N3O3 = 508.3598 [M + H]+.

N-[2-(Dimethylamino)ethyl]-3-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]-1,8-
naphthalimide (41): white solid. Yield: 18.2 mg, (55%). TLC (MeOH/CH2Cl2, 1:9, v/v):
Rf = 0.34. 1H-NMR (acetone-d6, 600.26 MHz): δ (ppm) = 9.72 (s, 1H, NH), 8.73 (d, 1H,
J = 2.1 Hz, Harom), 8.55 (d, 1H, J = 2.1 Hz, Harom), 8.39 (dd, 1H, J = 7.2, 1.0 Hz, Harom),
8.26 (d, 1H, J = 8.3 Hz, Harom), 7.79 (dd, 1H, J = 8.1, 7.3 Hz, Harom), 4.25 (t, 2H, J = 6.9 Hz,
CH2-N(CO)2), 3.71 (br s, 1H, CHcarborane), 2.67 (dd, 2H, J = 9.3, 6.4 Hz, CH2-CONH), 2.61 (t,
2H, J = 7.0 Hz, CH2-N(CH3)2), 2.54 (dd, 2H, J = 9.3, 6.7 Hz, CH2-carborane), 2.30 (s, 6H,
N(CH3)2), 3.0–1.5 (m, 10H, B10H10); 13C-NMR (acetone-d6, 150.95 MHz): δ (ppm) = 170.34
(1C, Camide), 164.46 (1C, Cimide), 164.18 (1C, Cimide), 138.85–121.73 (10C, 10Carom), 76.72 (1C,
Ccarborane), 57.74 (1C, CH2-N(CH3)2), 56.92 (1C, CHcarborane), 46.03 (2C, 2 × CH3), 38.79
(1C, CH2-N(CO)2), 37.14 (1C, CH2-CONH), 32.49 (1C, CH2-carborane); 11B-NMR {1H BB}
(acetone-d6, 192.59 MHz): δ (ppm) = −4.33 (s, 1B, B5), −9.87–−10.92 (m, 5B, B4, 6, 9, 10,
12), −13.45 (s, 2B, B8, 11), −14.93 (s, 2B, B2, 3); UV (99.8% EtOH): λmax = 258, 338, 375 nm,
λmin = 293, 358 nm, λsh = 228 nm; FT-IR: νmax (cm−1) = 2922 (C-Haliphat), 2597 (B-H), 1697
(C=O), 1657 (C=O), 730 (B-B); RP-HPLC (gradient B): tR = 21.03 min; APCI-MS: m/z: 482
[M + H]+, calcd for C21H31B10N3O3 = 481.

N-[2-(N-Pyrrolidinyl)ethyl]-3-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]-1,8-
naphthalimide (42): white solid. Yield: 17.2 mg (49%). TLC (MeOH/CH2Cl2, 1:9, v/v):
Rf = 0.34. 1H-NMR (DMSO-d6, 600.26 MHz): δ (ppm) = 10.59 (s, 1H, NH), 8.69 (d, 1H,
J = 1.9 Hz, Harom), 8.58 (d, 1H, J = 2.1 Hz, Harom), 8.35–8.33 (m, 2H, 2Harom), 7.79 (t, 1H,
J = 7.7 Hz, Harom), 4.18 (t, 2H, J = 7.1 Hz, CH2-N(CO)2), 4.09 (br s, 1H, CHcarborane), 2.72 (br
s, 2H, CH2-pyrrolidine), 2.59 (br s, 4H, N-CH2pyrrolidine-CH2), 2.54 (t, 2H, J = 8.6 Hz, CH2-
CONH), 2.40 (t, 2H, J = 8.0 Hz, CH2-carborane), 1.69 (br s, 4H, CH2-CH2pyrrolidine-CH2),
3.0–1.5 (m, 10H, B10H10); 13C-NMR (DMSO-d6, 150.95 MHz): δ (ppm) = 169.58 (1C, Camide),
163.31 (1C, Cimide), 163.08 (1C, Cimide), 137.74–120.69 (10C, 10Carom), 75.84 (1C, Ccarborane),
56.42 (1C, CHcarborane), 53.71 (1C, N-CH2pyrrolidine-CH2), 52.93 (1C, CH2-pyrrolidine), 38.57
(1C, CH2-N(CO)2), 36.16 (1C, CH2-CONH), 31.14 (1C, CH2-carborane), 23.16 (1C, CH2-
CH2pyrrolidine-CH2); 11B-NMR {1H BB} (DMSO-d6, 192.59 MHz): δ (ppm) = −4.58 (s, 1B,
B5), −11.09 (m, 5B, B4, 6, 9, 10, 12), −13.55 (s, 2B, B8, 11), −14.94 (s, 2B, B2, 3); UV (99.8%
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EtOH): λmax = 254, 338, 375 nm, λmin = 293, 358 nm, λsh = 229 nm; FT-IR: νmax (cm−1) =
2921 (C-Haliphat), 2597 (B-H), 1696 (C=O), 1654 (C=O), 728 (B-B); RP-HPLC (gradient B):
tR = 21.27 min; APCI-MS: m/z: 508 [M + H]+, calcd for C23H33B10N3O3 = 507.

3.2. Biological Investigation
3.2.1. Cytotoxicity Assay

The cytotoxic properties of synthesized compounds were evaluated using human
cancer cell line HepG2 established from hepatocellular carcinoma. Cell lines was purchased
from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
(DSMZ, Braunschweig, Germany) and from ECACC (Salisbury, UK).

HepG2 cells were propagated in Dulbecco′s Modified Eagle Medium (DMEM, Braun-
schweig, Germany; Life Technologies, Warsaw, Poland) supplemented with 10% heat-
inactivated fetal bovine serum (FBS; Life Technologies, Warsaw, Poland) and 100 units/mL
penicillin G with 100 mg/mL streptomycin (Life Technologies, Warsaw, Poland). The cells
were incubated at 37 ◦C in a humidified atmosphere containing 5% CO2.

Upon reaching 80–90% confluency, cells were harvested with 0.25% trypsin in 1 mM
EDTA (Life Technologies, Warsaw, Poland) and transferred into 96-well microplates at
5000 cells/well (HepG2 cells). After overnight incubation of cells at 37 ◦C in a humidified
atmosphere containing 5% CO2, the culture medium was removed and replaced with
a freshly prepared solution of compounds in culture medium or medium itself as the
control group.

Stock solution of each compound was prepared in DMSO at 50 mM. Stock solutions
were diluted with the growth medium supplemented with 5% FBS to ensure drug dis-
solution for obtaining concentrations ranging from 0.1 to 200 µM. The cytotoxicity was
evaluated by the MTT assay. The final content of DMSO in solutions did not exceed
0.2%, and an additional control group with 0.2% DMSO was included to rule out the
effect of solvent. After treatment, cells were incubated at 37 ◦C in 5% CO2 for additional
24 h. Upon completion of the incubation, the medium was aspirated and replaced with
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye solution (50 µL,
0.5 mg/mL). After 3 h incubation, the resulting MTT formazan crystals were dissolved in
DMSO (100 µL). To ensure the complete dissolution of formazan, the plates were shaken
on an orbital microplate shaker at 1000 rpm for 15 min (Thermoshaker NeoLab 7–0055,
Bionovo, Legnica, Poland). The optical density of each well was then measured on a
microplate spectrophotometer (Bio-Rad 680; Bio-Rad, Warsaw, Poland) at a wavelength of
570 nm. Each experiment consisted of 5 replications of each concentration, and each experi-
ment was repeated three times independently. The results were calculated as percentage
of control group viability. The IC50 values were determined using a nonlinear regression
from the plot of % viability against log dose of compounds by using GraphPad Prism 6.0
software (GraphPad, San Diego, CA, USA).

3.2.2. Cell Cycle Analysis by Flow Cytometry

HepG2 (5× 105) cells were seeded onto 6-well cell culture plates and incubated for 24 h
with the analyzed compounds at a concentration corresponding to whole IC50 values. DNA
content was determined by flow cytometry with PI (Sigma-Aldrich (Steinheim, Germany))
staining. After incubation, the cells were trypsinized and washed twice with PBS (1 mL).
In the next step, the cells were fixed with an ice-cold 80% ethanol. After 1 h incubation in
4 ◦C, the cells were stored at −20 ◦C for further analysis. After double wash with PBS, the
fixed cells were stained with PI (50 µg/mL) with the addition of RNAse A (100 µg/mL) for
30 min at 37 ◦C in the dark. The PI fluorescence was measured by FACSCalibur (Becton
Dickinson, Franklin Lake, NJ, USA), and data were analyzed by FlowJo software.

3.2.3. Oxidative Stress Measurements in HepG2 Cells by Flow Cytometry

HepG2 cells (3.5 × 105) were seeded onto 6-well plates, cultured with EMEM media
at 37 ◦C and 5% CO2 saturation, and incubated until 60–70% confluence. Subsequently, the
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cells were treated for 24 h with the tested compounds at a concentration that corresponds to
a half of IC50 value. Next, the cells were detached with trypsin (Sigma-Aldrich (Steinheim,
Germany)) and washed twice with DPBS (1 mL) (Thermo Fisher Scientific (Waltham,
MA, USA)), and the level of intracellular ROS generation was analyzed by dual staining
with H2DCFDA/PI according to the manufacturer′s protocol (Thermo Fisher Scientific
(Waltham, MA, USA)), in which fluorescence was triggered in the presence of ROS.

3.2.4. Analysis of 8-Oxo-dG in HepG2 Cells by HPLC-UV-ED

HepG2 cells (1 × 106) were seeded onto flasks (25 cm2) and cultured in the supple-
mented growth medium for 16 h. Subsequently, the cells were treated with compounds
31 (53 µM), 33 (5 µM), 34 (8 µM), 35 (9 µM), and 36 (6 µM) for 24 h. After incubation,
the cells were trypsinized, rinsed twice with PBS, and pelleted by centrifugation (200× g,
3 min). Total DNA was isolated from the treated cells and untreated control cells by using
Genomic mini DNA isolation kit (A & A Biotechnology, Gdynia, Poland) according to the
manufacturer′s protocol. Quality of the total DNA was assessed spectrophotometrically.

DNA (1 µg) was dissolved in sodium acetate buffer (10 µL, 40 mM, pH 5.3) containing
ZnCl2 (0.1 mM) and digested witH-Nuclease P1 (3 µg). Samples were incubated for 3 h
at 37 ◦C. Subsequently, Tris–HCl (2 µL, 1M, pH 8.0) and alkaline phosphatase (1 U) were
added and incubated 2 h at 37 ◦C. All DNA hydrolysates were ultrafiltered using cut off
10,000 Da filter units.

8-Oxo-dG, and dG in hydrolysates were determined using HPLC-UV followed by
electrochemical detection and ED (Coulochem III Electrochemical Detector, ESA, Inc.,
Chelmsford, MA, USA). DNA hydrolysates were chromatographed isocratically by using
ammonium acetate (50 mM pH 5.3)/methanol (93:7, v/v). Detection of dG was performed
at 254 nm. 8-Oxo-dG was performed by the electrochemical detector: guard cell + 400 mV,
detector 1: +130 mV (as a screening electrode), detector 2: +350 mV (as a measuring
electrode set to sensitivity of 500 nA/V). All results are expressed as mean ± SD.

To determine 8-oxo-dG contents guanosine amount was necessary. The total number
of 8-oxo-dG in genome was calculated using special formula [80].

3.2.5. Apoptosis/Necrosis Assay by Flow Cytometry

Apoptosis/necrosis assay was performed by double staining of cells with YO-PRO-1
(Thermo Fisher Scientific (Waltham, MA, USA)) and propidium iodide (PI, Sigma-Aldrich
(Steinheim, Germany)) fluorescent dyes. Briefly, HepG2 cells (0.5 × 105) were seeded
onto 6-well plates. On the next day, the cells were treated for 24 h with the analyzed
compounds at a concentration corresponding to whole IC50 values. Subsequently, the
cells were detached with trypsin (Thermo Fisher Scientific (Waltham, MA, USA)), washed
twice with DPBS (1 mL) (Thermo Fisher Scientific (Waltham, MA, USA)), and stained with
YO-PRO-1 and PI according to the manufacturer′s protocol for 30 min at 37 ◦C in the dark.
The cells were analyzed immediately after staining with 488 nm excitation by Accuri C6
flow cytometer (Becton Dickinson, Franklin Lake, NJ, USA).

3.2.6. Apoptosis Detection Using Annexin V Conjugate Staining

HepG2 cells (4 × 105) were seeded onto 6-well plates, cultured with EMEM media
at 37 ◦C and 5% CO2, and incubated until 60–70% confluence. Subsequently, the cells
were treated for 24 h with the tested compounds 31, 33–36 were added at concentration
that corresponds to the whole IC50 value. After 24 h incubation, the cells were washed
with ice-cold PBS buffer (Gibco, Grand Island, NJ, USA), harvest with 1 × trypsin/EDTA
(Corning), and centrifuged (1200 rpm, 3 min). Next, the cells were washed in ice-cold PBS
and recentrifuged. Supernatants were discarded, and the cells were suspended in annexin-
binding buffer (100 µL, 10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl2, pH 7.4). The
cells were stained by adding of the Annexin V Alexa Fluor 647 conjugate (5 µL) (Thermo
Fisher (Waltham, MA, USA)). The cells were incubated at RT, for 15 min, in the dark. After
incubation, annexin binding buffer (400 µL) was added to the Alexa Fluor 647-stained
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cells, mixed gently, and kept on ice until analysis. The rate of apoptosis was evaluated
immediately after incubation by FACSCalibur flow cytometer with excitation at 635 nm.

3.2.7. Autophagy Assay by Flow Cytometry

Autophagy assay was performed in HepG2 cells by staining with Green Detection
Reagent (Autophagy Detection Kit, ab139484, Abcam, Cambridge, UK) fluorescent dye with
excitation/emission at 463/534 nm. Briefly, the cells (3.85 × 105) were seeded onto 6-well
plates containing the growth medium (EMEM) and incubated until 70–80% confluency. On
the next day, the cells were treated for 24 h with the analyzed compounds at a concentration
corresponding to whole IC50 values. Rapamycin (autophagy inducer) (1 µM) was used
to create a strong, single positive green fluorescence signal. Subsequently, the cells were
detached with trypsin (Thermo Fisher Scientific (Waltham, MA, USA)), washed twice with
DPBS (1 mL) (Thermo Fisher Scientific (Waltham, MA, USA)), and stained with Green
Detection Reagent according to the manufacturer′s protocol for 30 min at 37 ◦C in the dark.
The cells were analyzed immediately after staining with 488 nm excitation by Accuri C6
flow cytometer (Becton Dickinson, Franklin Lake, NJ, USA).

3.2.8. Lipid Peroxidation Measurements by Flow Cytometry

HepG2 cells (3.85 × 105) were seeded onto 6-well plates, cultured with EMEM media,
at 37 ◦C and 5% CO2 saturation, and incubated until 60–70% confluence. Subsequently, the
cells were treated for 24 h with the tested compounds at a concentration that corresponds to
whole IC50 values. Next, the cells were detached with trypsin (Sigma-Aldrich (Steinheim,
Germany)), washed twice with DPBS (1 mL) (Thermo Fisher Scientific (Waltham, MA,
USA)) and intracellular oxidation of lipids was analyzed by staining with BODIPY® 581⁄591
C11 reagent according to the manufacturer’s protocol (Thermo Fisher Scientific (Waltham,
MA, USA)). Upon oxidation in live cells, the reagent shifts fluorescence emission peak
from 590 nm (red) to 510 nm (green). Cumene peroxide (10 µM) was used as a positive
control to induce lipid peroxidation. Cells were analyzed immediately after staining, with
488 nm excitation by FACSCalibur flow cytometer (Becton Dickinson, Franklin Lake, NJ,
USA) and data were analyzed by FlowJo software. The ratios of the signal from the 590 to
510 channels were used to quantify lipid peroxidation in cells.

3.2.9. Fluorescence Imaging Experiment

HepG2 wells were seeded on a glass-bottom 4-well CELLview cell culture dishes
(Greiner Bio-One GmbH, Kremsmünster, Austria) at a density of 10 × 104/well and
cultured in supplemented EMEM until 80–90% confluency. Then cells were treated with
tested compounds at the final concentration corresponding to the whole IC50 value, for 1 h
and 24 h. In the next step, lysosomes were labeled with 100 nM of LysoTracker Red DND-99
(Thermo Fisher Scientific (Waltham, MA, USA)) for 15 min, and nuclei were stained with
3 µg/mL of Hoechst 33342 (Thermo Fisher Scientific (Waltham, MA, USA)) for 5 min.
After incubation, the cells were gently rinsed in PBS to remove free dyes, placed in the
FluoroBrite DMEM (Thermo Fisher Scientific (Waltham, MA, USA)). Live cell imaging was
performed using a Leica TCS SP5 II confocal laser scanning microscope equipped with a
White Light Laser (470–670 nm), a 405 laser and an environmental cell culture chamber that
provided controlled conditions of temperature, CO2 saturation and humidity. Fluorescence
images were collected using a Plan Apo 63x 1.4 NA oil-immersion objective at Ex/Em
488/500–600 nm for autofluorescence of tested compounds, 561/585–655 nm for lysosomes
labeling and 405/430–480 nm for nuclei staining. LAS AF (Leica, Wetzlar, Germany) and
Leica LAS X software with a deconvolution module were used for image processing and
fluorescence analysis, respectively.

3.2.10. Human Topoisomerase IIα Relaxation Assay

The Human Topoisomerase II-alpha Relaxation Assay Kit was purchased from In-
spiralis (Norwich, UK). The Topo II-alpha inhibition assay was performed as described
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be the manufacturer. Briefly, the reaction mixture (30 µL) containing tested compound
(100 µM) dissolved in DMSO (which final concentration of 2% or 4% had no influence on
the Topo II-alpha activity), supercoiled pBR322 (0.5 µg) in 1X Assay Buffer and ATP (1 mM)
was incubated at 37 ◦C for 15 min. Next, Topo-II alpha (1 U) was added and the reaction
mixture was incubated at 37 ◦C for an additional 45 min. The reaction was terminated by
addition of the STEB buffer (40% (w/v) sucrose, Tris-HCl (100 mM, pH 8), EDTA (1 mM),
bromophenol blue (0.5 mg/mL)). The products were analyzed by electrophoresis using
agarose gel (1%) in TEA buffer at 70 V for 2 h, followed by the ethidium bromide staining
For the most active compounds 6 and 7 the reaction was repeated in a concentration range
of 25–200 µM. The percentage of Topo-II alpha activity inhibition was calculated by densit-
ometric quantification (Quantity One software, Bio-Rad, Warsaw, Poland). The occurrence
of a band representing supercoiled DNA on an agarose gel indicated the inhibition of
enzyme activity.

3.2.11. Statistical Analysis

Statistical analyzes were performed using GraphPad Prism version 6.0 for Windows,
(GraphPad Software, San Diego, CA, USA). Apoptosis and necrosis as well as cell cycle
assay was analyzed by two-way analysis of variance (ANOVA), followed by Tukey′s
multiple comparison test. ROS induction was analyzed by one-way ANOVA followed by
Tukey′s multiple comparison test. Statistical significance for mitochondrial ROS production
was determined by one-way ANOVA followed by Dunnett′s multiple comparison test. The
results are presented as mean ± SEM from three independent experiments; p values less
than 0.05 were considered statistically significant. Statistical significance is indicated with
asterisks: (ns) p > 0.05, (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, and (****) p < 0.0001.

3.3. Physicochemical Investigation with DNA
3.3.1. Materials

Calf-thymus (ct-DNA) was purchased from Sigma (St. Louis, MO, USA) and used
without purification. Sodium cacodylate (for the preparation of cacodylate buffer) was
purchased from Acros Organics (Geel, Belgium). Water was obtained from a Milli-Q
purification system. All experiments were performed with freshly prepared solutions.

3.3.2. Preparation of ct-DNA

The ct-DNA was dissolved in H2O, reconstituted overnight at 4 ◦C to dissolve all
the material, and then filtered through a 0.45-µm filter. The molar concentration of ct-
DNA was determined from UV-visible spectra by using molar absorption coefficient (ε)
of 6600 M−1 cm−1at 260 nm [81]. The purity of ct-DNA was confirmed by UV-visible
spectroscopy by measuring the ratio of absorbance at 260 nm to 280 nm and was found to
be ≥1.8, indicating that DNA was sufficiently free of proteins.

3.3.3. Melting Temperature (Tm) Measurements

The measurements were performed by adding aliquots of acetone stock solution
of the tested compounds to the buffer solution (pH 7.0, 20 mM, cacodylate buffer, ace-
tone content of the final solution = 0.23–0.35%). The Tm curves were collected at r = 0.3
(r = [compound]/[ct-DNA]) to assure the dominant binding mode. Thermal melting
curves were determined by following the absorption change at 260 nm as a function
of temperature by using a GBC Cintra10 UV-VIS spectrometer equipped with a GBC
Thermocell Peltier Power Supply using a 1 cm path length cell. The absorbance of the
samples was monitored at 260 nm from 30 ◦C to 90 ◦C with a heating rate of 1 ◦C/min. Tm
values are the midpoints or the transition curves determined from the maximum of the
first derivative. The ∆Tm values were calculated by subtracting Tm of the free nucleic acid
from Tm of the sample. Every ∆Tm value reported in the study was the average of at least
three measurements. The error in ∆Tm was ±0.5 ◦C.
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3.3.4. Circular Dichroism Measurements

The measurements were performed by adding aliquots of DMSO stock solution of the
tested compounds to the buffer solution (pH 7.0, 20 mM, cacodylate buffer, DMSO content
of the final solutions = 0.38–0.58%). Changes in the CD spectrum of ct-DNA upon the
addition of compound were measured at different molar ratios r = [compound]/[ct-DNA].
Circular dichroism spectra were recorded on a JASCO J-815 CD spectrometer with a JASCO
CDF-426S Peltier thermostated cell holder (JASCO, Tokyo, Japan) by using a rectangular
quartz cuvette of path length 0.5 cm (1 mL) in the 230–400 nm region. The reported CD
profiles are an average of three successive scans with 200 nm per minute scan time and
an appropriately corrected baseline. The temperature was maintained at 20 ◦C during
the experiment.

3.3.5. Ultraviolet-Visible Spectra Titration

The measurements were performed by adding aliquots of acetone stock solution of
the tested compounds to the buffer solution (pH 7.4, 20 mM, 50 mM NaCl, Tris-HCl buffer,
acetone content of the final solutions = 0.15–1.15%) to the final concentration 10 µM. The
tested compounds were incubated 5 min, with increasing concentrations ranging from 0 to
15 µM of ct-DNA at 37◦, then the UV-vis absorption spectra, between 315–455 nm, were
recorded using a GBC Cintra10 UV-VIS spectrometer equipped with a GBC Thermocell
Peltier Power Supply using a 1 cm path length cell. The binding constant was calculated
according to the following equation [82]:

A0

A− A0
=

εG

εH−G − εG
+

εG

εH−G − εG
× 1

Kb[DNA]
(1)

where Kb is the binding constant, A0 and a are absorbance of the free tested compound and
the apparent one, εG and εH−G are their coefficient respectively, [DNA] is the concentration
of [DNA] in base pair. The slope to intercept ratio of the plot between A0/A−A0 versus
1/[DNA] yielded the binding constant.

3.4. Theoretical Calculations
3.4.1. Model Building and CoMFA Modeling

Sybyl-X 2.0/Certara and HyperChem 6.0 programs were engaged to conduct the
molecular modeling simulations. OpenBabel (inter)change file format converter was
employed for data conversion. The crystallographic geometry of carborane cluster was
retrieved from Crystallographic Data Centre (deposition code: 1010195) and modified
accordingly. The initial compound geometry optimization was performed using the op-
timized potentials for liquid simulations (OPLS) force field and Polak-Ribiere (conjugate
gradient) method implemented in HyperChem 6.0 with a 0.1 kcal/A mol energy gradient
convergence criterion. The specification of the electrostatic potential values based on the
partial atomic charges was carried out with the Gasteiger–Hückel method implemented in
Sybyl-X. CoMFA modeling efficiency of electronic and steric potentials in the molecular en-
vironment is directly controlled by the specification of the atomic superimposition. Hence,
one 6-ordered atom trial alignment on the most active molecule 9 according to the active
analogue approach (AAA) was used in FIT method to cover the entire bonding topology
of naphtalimide ring (pharmacophore hypothesis). The steric and electrostatic potentials
were calculated using sp3 carbon probe atom with a charge of +1. CoMFA grid spacing
was 2.0 Å for all the dimensions within the defined region, which extended beyond the
van der Waals envelopes of all molecules by at least 4.0 Å—for each molecule the energies
with a total of 1680 grid points were calculated with 2 Å spacing in a lattice of 14 × 12 × 10,
respectively. The potential energies at each lattice point can be plotted as three-dimensional
color-coded contour maps indicating the regions where steric hindrance and/or charged
substituents enhance or diminish the binding affinity.
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3.4.2. Similarity-Based Activity Landscape (SALI)

The numerical sampling of similarity-related structure-activity landscape index (SALI)
can be quantitatively expressed according to the following formula:

SALIx,y =

∣∣Ax − Ay
∣∣

1− sim(x, y)
(2)

where Ax and Ay are the activity profiles for the x-th and y-th molecule and sim(x,y)
is the pair-wise similarity evaluation [83,84]. Tanimoto coefficient was engaged for the
fingerprint-based similarity estimation, where the structural pair-wise molecular related-
ness is approached using the equation:

T(x, , y) =
nxy(

nx + ny − nxy
) (3)

where nxy is the number of bits set into 1 shared in the fingerprint of the molecule x and y,
nx is the number of bits set into 1 in the molecule x, ny is the number of bits set into 1 in the
molecule y, respectively.

3.4.3. Principal Component Analysis (PCA) and Partial Least Squares Method (PLS)

The human-friendly 2D/3D plots of the compound distribution in the experimental-
based (FCS) and virtual-derived (VCS) molecular space might be displayed using the
principal component analysis (PCA) method. PCA is a linear projection method, that can
be applied to model multivariate data with a relatively small number of so-called principal
components (scores and loadings) generated to maximize the description of variance within
the input data [85]. The PCA model with f principal components for a data matrix X can
be calculated as follows:

X = TPT + E (4)

where X is a data matrix with m objects and n variables, T is the score matrix with dimen-
sions (m × f ), PT is a transposed matrix of loadings with dimensions (f × n) and E is a
matrix of the residual variance (m × n) not explained by the first f principal components.
On the whole, the first few principal components (PCs) frequently describe sufficiently
data variance and reveal the groups of objects.

The partial least squares (PLS) approach generates a regression relation between
variable Y and an ensemble of descriptors X according to the following equation:

Y = Xb + e (5)

where b is a vector of the regression coefficients and e is a vector of the errors. The com-
plexity of PLS models was estimated using the leave–one–out cross–validation procedure
(LOO-CV) [86]. The dependent variable for each left–out object is calculated based on the
model with one, two, three, etc. factors, respectively. A cross–validated leave–one–out q2

cv
metric for the approximation of the model performance is calculated as follows:

q2
cv = 1− ∑m

i (obsi − predi)
2

∑m
i (obsi −mean(obsi))

2 (6)

where obs is the assayed value; pred is the predicted value; mean is the mean value of obs,
and i refers to the object index ranging from 1 to m. The cross-validated standard error of
prediction s is estimated using the equation:

s =

√
∑m

i (obsi − predi)
2

m− k− 1
(7)
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where m is the number of objects and k is the number of the PLS factors in the model.
The quality of external predictions was validated by the standard deviation of error of
prediction (SDEP), q2

test and the mean absolute error (MAE) metrics defined as:

SDEP =

√
∑n

i (predi − obsi)
2

n
(8)

q2
test = 1− ∑n

i (obsi − predi)
2

∑n
i (obsi −mean(obsi))

2 (9)

MAE =
∑n

i |predi − obsi|
n

(10)

where n is the number of molecules in the test set.

4. Conclusions

In this paper, we have described convenient protocols for synthesizing 1,8-naphthalimide
derivatives modified with an ortho- or meta-carborane clusters at position 3 of the heteroaro-
matic skeleton. The X-ray structure of the 1,8-naphthalimide–carborane conjugates 39
and 41 was established. In addition, we determined the cytotoxic activity of the modified
conjugates against HepG2 cells and found that modified naphthalimides were significantly
more active than modified anhydrides. Conjugates modified with ortho-carboranes were
rather more active than those bearing meta-carboranes. The type of linker chain between
the carborane cluster and the heterocyclic system influenced the antiproliferative activity
of the naphthalimides, and the activity varied as follows: 8–11 (-triazole- linker) > 33–36
(-NH-CH- linker) > 39–42 (-NH-CO- linker) > 17–20 (-O-triazole- linker). Furthermore,
our study showed that modified conjugates could effectively induce cell cycle arrest at
G0/G1 or G2M phase and activate mainly apoptosis as well as autophagy and ferroptosis
which was confirmed using the flow cytometry analysis. Among the studied compounds,
conjugate 35 induced ROS production resulting in almost four times higher number of
8-oxo-dG in comparison to mitonafide, and strongly promoted apoptosis which might
inhibit the growth of HepG2 cells. However, the presence of the carboranyl cluster at
position 3 of these compounds did not promote them as effective Topo II inhibitors.

The DNA binding properties of the synthesized compounds were also investigated by
UV–vis, CD, and thermal denaturation experiments. It was found that these compounds
were rather weak classical DNA intercalators, which indicated another type of interaction
with DNA. The lysosome-targeting behavior of compounds 33, 34, and 36 and their imaging
capacity w studied by co-localization experiments, which revealed that these conjugates
selectively localized in the lysosomes, which additionally enabled the localization of
boron/carborane in the cells.

We assessed the similarity-driven property space for the series of carborane-containing
conjugates using PCA. The investigation of the spatial space defined by the first three or-
thogonal components (PC1–PC3) revealed that carborane-based derivatives are clustered
into four subgroups. The projection of the pIC50 values on the PC1 vs. PC2 plane clearly
indicated the diagonal separation of the active and nonactive conjugates. Moreover, the
enhancement of the planar descriptor-driven projection with response data resulted in
a structure–activity landscape that can be regarded as a subtle picture of (dis)allowed
structural adjustment(s) potentially valid for molecular activities. Interestingly, the replace-
ment of the anhydride-like fragment with the imide-based motif influenced the molecular
potency, as shown by the comparison of the most active (11, 33, 8) and nonactive (6, 7, 15,
16) compounds, respectively. Finally, we performed a quantitative CoMFA ligand-based
study to specify the potentially valid steric and electrostatic features of the pharmacophore
pattern. In this case, the bundle of steric bulk was indicated as the privileged feature
contributing (un)favorably to the CoMFA model that was validated accordingly.
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The quantitative comparison of the field-based descriptors can lead to a useful pic-
ture of the drug–receptor recognition pattern; however, it should be treated as a crude
approximation of the underlying biological reality.

The present work demonstrated that new organic and inorganic hybrids can be con-
sidered as a novel class of compounds with potential antitumor activities. Studies on
the synthesis and biological properties of new naphthalimides bearing modified carbo-
rane at position 4 of the naphthalic ring are carried out in our laboratory and will be
published soon.
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