

Biochem. J. (2012) 441, 1017–1026 (Printed in Great Britain) doi:10.1042/BJ20111659

This is a data-enriched, interactive PDF that provides the gateway to a world of information when opened in Utopia Documents Download FREE software now

Crystallographic and X-ray absorption spectroscopic characterization of *Helicobacter pylori* UreE bound to Ni^{2+} and Zn^{2+} reveals a role for the disordered C-terminal arm in metal trafficking

Katarzyna BANASZAK*¹, Vlad MARTIN-DIACONESCU^{†1}, Matteo BELLUCCI[‡], Barbara ZAMBELLI[‡], Wojciech RYPNIEWSKI^{*}, Michael J. MARONEY[†] and Stefano CIURLI[‡]²

*Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland, †Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A., ‡Laboratory of Bioinorganic Chemistry, Department of Agro-Environmental Science and Technology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, and §Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy

The survival and growth of the pathogen *Helicobacter pylori* in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni²⁺ ions in the active site. The metallo-chaperone UreE facilitates *in vivo* Ni²⁺ insertion into the apoenzyme. Crystals of apo-*Hp*UreE (*H. pylori* UreE) and its Ni²⁺ and Zn²⁺-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni²⁺) and 2.52 Å (Zn²⁺) resolution, show the conserved proximal and solvent-exposed His¹⁰² residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due

INTRODUCTION

Urease [1,2] is a Ni²⁺-dependent enzyme that plays a crucial role in the nitrogen cycle by catalysing the hydrolysis of urea to ammonia and carbamate with a 3×10^{15} -fold rate enhancement with respect to the uncatalysed reaction [3] (Scheme 1).

The active site contains two Ni²⁺ ions that are bridged by a post-translationally carbamylated lysine residue and a hydroxide ion, and are bound to the protein framework by four histidine imidazole nitrogen atoms and one aspartate residue carboxylate oxygen atom [4–7]. The co-ordination geometry of the Ni²⁺ ions is completed by labile water molecules, yielding one penta-co-ordinated Ni²⁺ ion with a distorted square-pyramidal geometry, and one hexa-co-ordinated Ni²⁺ ion with a distorted octahedral geometry (Scheme 2).

Urease is initially produced in the apo form, devoid of Ni^{2+} ions and enzymatic activity. The apo-enzyme is modified in several successive steps that require a dedicated set of accessory proteins, usually comprising UreD, UreF, UreG and UreE. [8] This process leads to carbamylation of the active-site lysine and incorporation of the binuclear metallic active site, with consequent enzyme activation (Scheme 2). The activity of urease is strictly required for the survival and growth of bacterial pathogens that colonize human and animal gastric mucosa as well as intestinal and urinary tracts, and therefore both the enzyme and the accessory proteins represent targets for drug development [9,10] to the binding of His¹⁵². The analysis of X-ray absorption spectral data obtained using solutions of Ni²⁺- and Zn²⁺-bound *Hp*UreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.

Key words: metal-ion selectivity, metallo-chaperone, metal trafficking, protein crystallography, urease assembly, X-ray absorption spectroscopy.

The urease activation process entails the formation of a multimeric complex between the apoenzyme and UreD, UreF and UreG, with the latter protein probably responsible for lysine carbamylation following GTP hydrolysis. UreE appears to act as a metallo-chaperone by delivering Ni^{2+} to the UreDFG complex [11–13]. This role for UreE is supported by the evidence that the concentration of Ni^{2+} required for proper assembly of the urease active site is considerably reduced, and a larger amount of enzyme is activated, in the presence of UreE [14]. Another crucial role for UreE is the enhancement of the GTPase activity of UreG [13], which relies on the direct UreE–UreG interaction shown to occur *in vivo* and *in vitro* [15,16].

Recombinant UreE proteins from different sources, including *Ka*UreE (*Klebsiella aerogenes* UreE) [17], *Bp*UreE (*Bacillus pasteurii* UreE) [18] and *Hp*UreE (*Helicobacter pylori* UreE) [19], have been structurally characterized. These orthologues consistently exhibit a homodimeric architecture composed of an N-terminal domain and a C-terminal domain, the latter mediating head-to-head dimerization. A conserved metal-binding site involves a pair of closely spaced histidine residues, one per monomer, located on the protein surface at the homodimer interface (His⁹⁶ in *Ka*UreE, His¹⁰⁰ in *Bp*UreE and His¹⁰² in *Hp*UreE).

Despite sharing common structural features, UreE proteins have different metal-binding capabilities. In particular, they exhibit a variable stoichiometry for Ni²⁺-binding that ranges from one

Abbreviations used: *Bp*UreE, *Bacillus pasteurii* UreE; EXAFS, extended X-ray absorption fine structure; *Hp*UreE, *Helicobacter pylori* UreE; ITC, isothermal titration calorimetry; *Ka*UreE, *Klebsiella aerogenes* UreE; MAD, multiwavelength anomalous dispersion; rmsd, root mean square deviation; XANES: X-ray absorption near-edge spectroscopy.

¹ These authors contributed equally to this work.

² To whom correspondence should be addressed (email stefano.ciurli@unibo.it).

The structural co-ordinates reported will appear in the PDB under accession codes 3TJA, 3TJB and 3TJ9.

Scheme 1 Mechanisms of urea decomposition in water

Scheme 2 Activation of urease and building of the nickel-containing active site

metal ion bound per dimer for HpUreE [15,20] to six ions for KaUreE [21], with two Ni²⁺ ions bound in the case of BpUreE [22]. Interestingly, this peculiarity is reflected by the nature of their C-terminal regions. KaUreE, possessing the highest Ni²⁺-sequestering activity, features a histidine-rich tail containing ten histidine residues among the last fifteen amino acids. BpUreE displays two C-terminal histidine residues at the end of its sequence, in the context of a His-Gln-His motif, whereas in this region HpUreE contains a single histidine residue (His¹⁵²) [23].

All UreE proteins contain at least one histidine residue in the C-terminal portion, an observation that suggested a role for the C-terminus in modulating the metal-trafficking activity of UreE proteins, in terms of both selectivity and stoichiometry of metal binding [15,22,23]. However, the structural and functional details of these regions are not well established. The crystal structure of KaUreE (PDB codes 1GMW, 1GMU and 1GMV) was determined on a truncated form of this protein (H144*KaUreE) that lacks the last 15 residues [17], whereas the crystal structure of *Bp*UreE (PDB codes 1EAR and 1EBO) showed a solid-state disorder that prevented the observation of the Gly-His-Gln-His motif at the C-terminus [18]. The recently described structures of HpUreE (PDB codes 3L9Z, 3NXZ, 3NYO and 3LAO) in the apo form or bound to Cu^{2+} , Ni^{2+} or an unidentified metal ion cover only residues 1/2-148/149 and therefore do not include His¹⁵² [19]. The only exception is the tetrameric (dimer of dimers) form of Ni-HpUreE, which features a square pyramidal Ni²⁺ site composed of four His¹⁰² residues (one from each protomer) in the basal plane and a single His¹⁵² in the axial position [19]. However, this type of tetrameric arrangement, even though observed commonly in the solid state probably because of the elevated concentrations utilized for protein crystallization, does not correspond to the simple dimeric form of the protein present in solution, as established using static and dynamic light scattering [15,22].

The present study describes the crystal structures of recombinant H_P UreE in the apo, Ni²⁺-bound and Zn²⁺-bound forms. These structures reveal the architecture of the C-terminal arm and the metal-binding mode of the His¹⁵² residue located in this region. The structures, determined in the solid state, were corroborated by X-ray absorption spectroscopy in frozen solutions of the wild-type and the H152A H_P UreE mutant proteins in the presence of bound Ni²⁺ and Zn²⁺, providing accurate metric parameters in the vicinity of the metal ions. The results of the present study clarify the role of the protein framework for Ni²⁺ and Zn²⁺ trafficking effected by UreE within the urease activation process.

EXPERIMENTAL

Protein crystallization

Recombinant apo-HpUreE was purified as described previously [15]. Crystallization trials were carried out using the hangingdrop vapour-diffusion method. Crystals of the apoprotein were obtained by mixing $2 \mu l$ of an 8 mg/ml protein solution in Tris/HCl buffer, pH 7, with a reservoir solution containing 0.1 M sodium citrate, pH 5.6, 0.5 M ammonium sulfate and 1.0 M lithium sulfate. Cuboidal crystals appeared within 2 weeks. Crystals of Zn-HpUreE were obtained by mixing $2 \mu l$ of an 8 mg/ml protein solution in Tris/HCl buffer, pH 7, containing an equimolar amount of Zn^{2+} (ZnSO₄), with 2 μ l of a reservoir solution made of 4.0 M sodium formate and 0.1 M sodium cacodylate, pH 6.5. Crystals with a hexagonal cross-section formed within 2 weeks. Crystals of Ni-HpUreE were obtained by mixing 2 μ l of an 8 mg/ml protein solution in Tris/HCl buffer, pH 7, containing an equimolar amount of Ni²⁺ (NiSO₄), with 2 μ l of a reservoir solution made of 4.0 M sodium formate and 0.1 M sodium acetate, pH 5.5. One block-shaped crystal appeared after approximately 30 days.

X-ray diffraction data collection, structure determination and refinement

X-ray diffraction data were recorded on the BL14.1 and BL14.2 beam lines at BESSY (Berlin Electron Storage Ring Company for Synchrotron Radiation) (Berlin, Germany) at 100 K in the presence of 20% (v/v) glycerol or 4.0 M sodium formate as a cryo-protectant. Data collection and refinement statistics are summarized in Table 1.

Three datasets for the Zn-HpUreE crystal were collected in a MAD (multiwavelength anomalous dispersion) experiment in the 2.52–2.77 Å resolution range (1 Å = 0.1 nm). The images were processed with the HKL package [24] using an 'anomalous' option during scaling. The Zn-HpUreE structure was solved with a three-wavelength MAD protocol in Auto-Rickshaw [25]. Heavy-atom searching was performed with SHELXD [26], and the resulting positions were refined with phase calculation using SHARP [27]. The density modification and phase extension were performed using DM [28] and RESOLVE [29]. An initial model was built using ARP/wARP [30,31]. Heavy-atom analysis based on the initial model, together with phasing and building cycles, were performed using PHASER [32], MLPHARE [33], SHELXE [34], RESOLVE [29] and BUCCANEER [33]. Three heavy-atom sites were detected, which included two Zn²⁺ ions and the sulfur atom of Cys⁹⁵. Initially, 598 residues from the four protomers in the asymmetric unit were found by automatic modelling, followed by manual model building and refinement using REFMAC [35].

One dataset at 1.59 Å resolution was recorded for the Ni-HpUreE crystal. The data were processed with the HKL package [24]. The structure was solved by molecular replacement using

Table 1 X-ray diffraction data collection and refinement statistics

Values in parentheses are for the highest-resolution shell.

	Zn- <i>Hp</i> UreE			Ni- <i>Hp</i> UreE	Apo- <i>Hp</i> UreE
Data collection					
Beamline	BESSY BL14.2			BESSY BL14.2	BESSY BL14.1
Temperature (K)	100			100	100
	Peak	Inflection	Remote		
Wavelength (Å)	1.28183	1.28316	1.27655	0.91885	0.91841
Space group	P6522			C2221	P212121
Cell constants (Å)					
а	109.34			67.55	69.00
b	109.34			117.14	70.47
С	280.34			98.66	123.34
Resolution (Å)	50.00-2.52 (2.56-2.52)	50.00-2.59 (2.63-2.59)	50.00-2.77 (2.82-2.77)	50.00-1.59 (1.62-1.59)	20.00-2.00 (2.03-2.00)
R _{svm}	0.092 (0.434)	0.095 (0.586)	0.100 (0.558)	0.049 (0.448)	0.060 (0.593)
Ι / σ(Ι)	22.4 (3.4)	21.5 (2.3)	20.8 (2.3)	24.9 (2.6)	21.6 (2.0)
Completeness (%)	99.9 (98.2)	99.7 (95.9)	99.5 (92.9)	97.9 (87.7)	99.7 (96.6)
Redundancy	9.4 (6.9)	9.1 (5.2)	9.0 (4.9)	8.4 (3.2)	5.5 (4.9)
Refinement					
Resolution (Å)	2.52			1.59	2.00
No. of reflections	33219			48955	38745
R _{work} /R _{free}	0.203/0.245			0.185/0.210	0.208 / 0.267
Number of protein atoms	4697			2402	4734
Number of metal atoms	2			1	0
Number of water molecules	186			154	100
Average B-factor for protein atoms (Å ²)	43.815			33.694	44.327
Average B-factor for metal atoms (Å ²)	37.275			28.650	-
Rmsd of bond lengths (Å)	0.021			0.031	0.022
Rmsd of bond angles (°)	1.909			2.578	1.947
PDB code	3TJ9			3TJ8	3TJA

Table 2 Final sample concentrations used for EXAFS analysis of HpUreE wild-type and H152A mutant

Sample	Protein (mM)	Ni ²⁺ (mM)	Zn ²⁺ (mM)
Ni- <i>Hp</i> UreE Zn- <i>Hp</i> UreE H152A Ni- <i>Hp</i> UreE H152A Zn- <i>Hp</i> UreE	0.53 0.53 0.77 0.22	0.48 0.69	0.48 0.19

PHASER [32] with one chain of Zn-*Hp*UreE as the search model. Solutions were found that corresponded to two *Hp*UreE protomers in the asymmetric unit. The atomic model was refined using REFMAC [35].

One dataset at 2.00 Å resolution was recorded for the apo-*Hp*UreE crystal. The data were processed with the HKL package [24]. The structure was solved by molecular replacement using PHASER [32], with one chain of Ni-*Hp*UreE as the search model. Four apo-*Hp*UreE protomers were found in the asymmetric unit. The atomic model was refined using REFMAC [35].

X-ray absorption spectroscopy sample preparation

Metal ions (0.9 equivalents) as sulfate salts were added to stock solutions of wild-type *Hp*UreE dimer (0.60 mM) and H152A-*Hp*UreE dimer (0.25 mM for Zn²⁺ and 0.87 mM for Ni²⁺) to prepare Zn²⁺- and Ni²⁺-bound protein samples. Final sample concentrations are listed in Table 2. Samples were prepared in 20 mM Tris/HBr buffer at pH 7, containing 150 mM NaBr. The protein samples were incubated for 5 min upon metal addition, loaded into sample cells consisting of a polycarbonate sample holder with a kapton window, and frozen in liquid N₂. The samples were stored at - 80 °C and transported in liquid N₂ before being

used at the synchrotron beam line. On the basis of established K_d values and protein concentrations [15], less than 2 % of the Ni²⁺ and Zn²⁺ added should be dissociated under these conditions.

X-ray absorption spectroscopy data collection and analysis

Datasets were collected at SSRL (Stanford Synchrotron Radiation Lightsource; 3 GeV ring) beam line 9-3 equipped with a 100element Ge X-ray fluorescence detector array (Canberra). The only exception is the H152A *Hp*UreE Ni²⁺ sample, which was run at beam line 7-3 using a 30-element Ge detector. Both stations consisted of a Si(220) $\varphi = 0^{\circ}$ double-crystal monochromator, and a liquid helium cryostat for the sample chamber. Söller slits were used to reduce scattering and 3 μ m Z-1 element filters were placed between the sample and the detector. Internal energy calibration was performed by collecting spectra simultaneously in transition mode on the relevant metal foil (Zn or Ni).

Data averaging and energy calibration was performed using SixPack [36]. The first inflection points from the XANES (Xray absorption near-edge spectroscopy) spectral regions were set to 9660.7 eV for Zn foil (Zn samples) and to 8331.6 eV for Ni foil (Ni samples). The AUTOBK algorithm available in the Athena software package was employed for data reduction and normalization [37]. A linear pre-edge function followed by a quadratic polynomial for the post-edge was used for background subtraction followed by normalization of the edge-jump.

Data limits were chosen to maximize resolution and signal-tonoise ratio. The Zn-*Hp*UreE EXAFS (extended X-ray absorption fine structure) data were extracted using an R_{bkg} of 0.9 and a spline with a range for k of 2–13.5 Å⁻¹, with a rigid spline clamp at higher k. The k³-weighted data were fitted in r-space over the k range 2–13.5 Å⁻¹ using an E_0 of 9670 eV. The Ni-*Hp*UreE EXAFS data were extracted using an R_{bkg} of 1, and a

Figure 1 Definition of the α angle involving histidine imidazole and bound metal ion M

spline from $k = 2 \text{ Å}^{-1}$ to $k = 13.5 \text{ Å}^{-1}$ with a strong clamp at high k values for wild-type HpUreE, and a spline from $k = 2 \text{ Å}^{-1}$ to $k = 12.5 \text{ Å}^{-1}$ with a rigid clamp at higher k values for H152A HpUreE. The k^3 -weighted data were fitted in r-space over the $k = 2-13.5 \text{ Å}^{-1}$ region for wild-type HpUreE and $k = 2-12.5 \text{ Å}^{-1}$ for the mutant, with E_0 for Ni²⁺ set to 8340 eV in both cases. All datasets were processed using a Kaiser–Bessel window with a dk of 2 (window sill).

Artemis software employing the FEFF6 and IFEFFIT algorithms was used to generate and fit scattering paths to the data [37–39]. Single-scattering and multiple-scattering fits were performed as described in subsequent sections. Single-scattering fits were generally carried out over an r-space of 1–2.0 (and up to 2.5) Å, whereas multiple-scattering fits were generated over the 1–4.0 (and up to 4.2) Å range of r-space, as specified in Supplementary Tables S1–S8 at http://www.BiochemJ.org/bj/441/bj4411017add.htm. Average values and bond lengths obtained from crystallographic data were used to construct rigid imidazole rings to fit histidine residues [40]. The position of the imidazole ring with respect to the metal centre was fitted in terms of the metal–ligand bond distance ($R_{\rm eff}$) and the rotation angle α (Figure 1) [41,42].

To assess the goodness-of-fit from different fitting models, the *R*-factor, χ^2 and reduced $\chi^2 (\chi_{\nu}^2)$ were minimized. Increasing the number of adjustable parameters is generally expected to improve the *R*-factor; however, χ_{ν}^2 may go through a minimum and then increase, indicating that the model is over-fitting the data. These parameters are defined as follows:

$$\chi^{2} = \frac{N_{idp}}{N_{pts}\varepsilon^{2}} \sum_{i=1}^{N} \left\{ \left\{ \text{Re}[\chi_{data}(R_{i}) - \chi_{theory}(R_{i})] \right\}^{2} + \left\{ \text{Im}[\chi_{data}(R_{i}) - \chi_{theory}(R_{i})] \right\}^{2} \right\}$$

and:

$$\chi_{\rm v}^2 = \frac{\chi^2}{(N_{\rm idp} - N_{\rm var})}$$

where N_{idp} is the number of independent data points defined as:

$$N_{\rm idp} = \frac{2\Delta r \Delta k}{\pi}$$

where Δr is the fitting range in *r*-space, Δk is the fitting range in *k*-space, N_{pts} is the number of points in the fitting range, N_{var} is the number of variables floating during the fit, ε is the measurement uncertainty, Re() is the real part of the EXAFS Fourier-transformed data and theory functions, Im() is the imaginary part of the EXAFS Fourier-transformed data and theory functions, $\chi(R_i)$ is the Fourier-transformed data or theory function and:

$$R = \frac{\sum_{i=1}^{N} \left(\{ \text{Re}[\chi_{\text{data}}(R_i) - \chi_{\text{theory}}(R_i)] \}^2 + \{ \text{Im}[\chi_{\text{data}}(R_i) - \chi_{\text{theory}}(R_i)] \}^2 \right)}{\sum_{i=1}^{N} \left(\{ \text{Re}[\chi_{\text{data}}(R_i)] \}^2 + \{ \text{Im}[\chi_{\text{data}}(R_i)] \}^2 \right)}$$

Figure 2 Crystal structure of apo-HpUreE

Ribbon schemes of the crystallographic structural model of the apo-*Hp*UreE dimer of dimers in the asymmetric unit. (**B**) Representation of the same structure in (**A**) rotated by 90° about the horizontal axis. Each of the protomers forming the dimer on the left is coloured from blue in the proximity of the N-terminus to red at the C-terminus in order to highlight the secondary structure elements along the protein sequence. The dimer on the right shows the two protomers in different colours (purple and pink). The side chains of the conserved His¹⁰² are represented as ball-and-stick models coloured according to the CPK (Corey–Panling–Koltun) colour code.

RESULTS

X-ray crystallography on HpUreE in the apo and holo forms bound to Ni²⁺ and Zn²⁺

Three crystal structures have been analysed: HpUreE in the apo form at 2.00 Å resolution (apo-HpUreE), the protein cocrystallized with Ni²⁺ at 1.59 Å resolution (Ni-HpUreE), and the protein co-crystallized with Zn²⁺, solved at 2.52 Å resolution (Zn-HpUreE). Each structure is in a different crystal form.

The crystals of the apoprotein are orthorhombic, $P2_12_12_1$, with four polypeptide chains assembled into two dimers in the asymmetric unit (Figure 2). Each chain was modelled starting from the N-terminal methionine residue, but at the C-termini the last 20–22 residues are disordered and therefore invisible. Unambiguous electron density extends to Ser¹⁴⁹ in chain A, to Met¹⁵⁰ in chains B and D, and to Val¹⁴⁸ in chain C.

The Ni-*Hp*UreE crystals are orthorhombic, $C222_1$, with one protein dimer and one Ni²⁺ ion in the asymmetric unit (Figure 3). Amino acid residues were modelled from Met¹ to His¹⁴⁹ for chain A and from Met¹ to His¹⁵² for chain B.

The Zn-*Hp*UreE crystals are hexagonal, $P6_522$, and contain two protein dimers and two Zn²⁺ ions in the asymmetric unit (Figure 4). The polypeptide chains were modelled from the Nterminal Met¹. Chains B and C could be traced to residue Ser¹⁵³ and Glu¹⁵⁴ respectively. Chains A and D were modelled to Ser¹⁴⁹, whereas the electron density from residues 150 to154 is unclear and has been interpreted as statically disordered residues (see below). In addition, the electron density in chain D is disordered from Leu¹³ to Ser¹⁹ and from Lys⁶⁵ to Ile⁷¹.

The polypeptide fold is similar to the previously reported crystal structures of *Ka*UreE [17] (PDB codes 1GMW, 1GMU and 1GMV), *Bp*UreE [18] (PDB codes 1EAR and 1EB0) and *Hp*UreE

Figure 3 Crystal structure of Ni-*Hp*UreE

(A) Ribbon scheme of the crystallographic structural model of the Ni-*Hp*UreE dimer in the asymmetric unit, with each protomer coloured from blue in the proximity of the N-terminus to red at the C-terminus in order to highlight the secondary structure elements along the protein sequence. The symmetry-related dimer that carries the Glu^{4B} residue bound to Ni²⁺ (represented as a black sphere) is shown as transparent gold ribbon. The side chains of the Ni-bound ligands His^{102A}, His^{152B} and Glu^{4B}, as well as the solvent molecule, are represented as ball-and-stick models coloured according to the CPK (Corey–Pauling–Koltun) colour code. (B) Close-up view of the co-ordination environment of the Ni²⁺ ion together with the 2*F*₀–*F*_c electron density map contoured at 1.5 σ (light blue) and the *F*₀–*F*_c electron density map contoured at 3.0 σ (magenta).

[19] (PDB codes 3L9Z, 3NXZ, 3NY0 and 3LA0). Each protein subunit contains two domains (Figures 2–4). The N-terminal domain includes residues from Met¹ to Asp⁷⁷ and consists of two three-stranded mixed β -sheets with two extended loops connecting strands 1 and 2, and strand 2 with strand 3. Each of the two loops contains a β -turn. The C-terminal domain includes residues from Ser⁷⁸ and has a ferredoxin-like $\beta \alpha \beta \beta \alpha \beta$ fold. Residues Glu¹⁴⁴–Leu¹⁴⁶ form a short fifth β -strand and the last ordered residues stretch along the two α -helices of the other subunit of the dimer. The segment from Ser¹⁴⁹ to Glu¹⁵⁴ is poorly ordered but interpretable in Zn-*Hp*UreE, whereas the remaining residues, up to the C-terminal Lys¹⁷⁰, are not visible in the electron density.

The proteins in the three crystal structures form dimers. The core of their interface is formed by two α -helices (residues 88–102) running in parallel. Each helix is braced on the other side by a segment of residues 146–150 from the other subunit. Both hydrophobic and hydrogen-bonded interactions occur between the two helices, and between the helices and neighbouring residues and the poorly ordered C-terminal stretch, with a notable hydrophobic cluster formed by pairs of Val⁸⁸ and Val⁹¹ from the two subunits. Symmetric inter-subunit hydrogen bonds are found between Tyr⁹⁶ and Ala¹⁰³, Asn¹⁰⁰ and His¹⁰², Ala⁸⁹ and Gln¹¹¹, and Glu⁹⁷ and Ser¹⁴⁹.

Ribbon scheme of the crystallographic structural model of the Zn-*H*pUreE dimer of dimers in the asymmetric unit. Each protomer of the dimer on the top is coloured from blue in the proximity of the N-terminus to red at the C-terminus in order to highlight the secondary structure elements along the protein sequence. The dimer on the bottom shows the two protomers in different colours (purples and pink). The side chains of the histidine residues binding the Zn²⁺ ions (shown as black spheres) are represented as ball-and-stick models coloured according to their position in the sequence and in the protomer. (**B**) Close-up view of the co-ordination environment of the Zn²⁺ ions together with the $2F_0-F_c$ electron density map contoured at 1.0 σ (light blue).

The Ni²⁺ ion in Ni-*Hp*UreE co-ordinates six ligands arranged in a pseudo-octahedral co-ordination geometry (Figure 3). It interacts with His^{102A}, His^{102B}, His^{152B}, Glu^{4B'} (a residue located on chain B of a symmetry-related molecule), one water molecule and another unidentified ligand (Figure 5A). The electron density of this moiety is elongated, and therefore it is unlikely to be a water molecule (Figure 3B). It could be His^{152A}, but there is no continuity in the electron density between this ligand density and the nearby Ser^{149A}, which is the last visible residue of chain A. This implies a disordered chain comprising residues 150 and 151. The role of Glu^{4B'} in forming a dimer of dimers is probably a solid-state effect since only dimers (not tetramers) are observed in solution using multi-angle scattering [15,22], and this dangling Ni²⁺ ligand could easily be replaced by a water molecule in solution.

In Zn-*Hp*UreE, each of the two Zn²⁺ ions have four ligands arranged in a pseudo-tetrahedral co-ordination geometry (Figure 4B). Zn(1) interacts with His^{102C}, His^{102D}, His^{152C} and

Figure 5 Schematic depiction of the ligand environments around the metal ions in Ni-HpUreE and Zn-HpUreE

(A) Interaction of the Ni²⁺ with six ligands in the Ni-*Hp*UreE structure. The A/B dimer is shown in grey, and the symmetry-related dimer A'/B' is shown by broken lines. The ambiguous interaction with His^{152A} is indicated with a grey line. (B) Interactions of the two Zn²⁺ ions with four ligands each in the Zn-*Hp*UreE structure. Dimers A/B and C/D are shown in grey. The alternative interactions with His^{152A} and Glu^{154A} are shown using a grey line.

a partially disordered Glu^{154D}, whereas Zn(2) is bound by His^{102A}, His^{102B}, His^{152B} and the partially disordered His^{152D} from the neighbouring C/D dimer (Figure 5B). The electron density corresponding to the segment His^{152D}–Glu^{154D} suggests an alternative interpretation, with the side chain of His^{152A} taking the place of Glu^{154D}, and Glu^{154A} replacing His^{152D}. The first alternative seems to have a higher occupancy factor, but some residual density indicates that the second alternative also occurs in the crystal.

All of the subunits of the apo and metal-bound *Hp*UreE models were superposed using the C α atoms. The rmsd (root-mean-square deviation) values ranged from 0.6 to 1.1 Å. The number of outliers, pairs of atoms deviating more than 3 rmsd, ranged from zero to nine. A comparison with the previously determined structures of UreE from *H. pylori* (PDB codes 3MY0 and 3L9Z) gave similar statistics. Comparing the two apo-*Hp*UreE dimers or the two Zn²⁺ dimers present in the asymmetric unit gave a similarly good fit (0.8–0.9 Å, with zero and three outliers respectively). Significantly larger differences were observed only when apo-*Hp*UreE dimers were compared with metal-loaded dimers (rmsd 1.3–1.4 Å with 30–66 outliers) and when Zn²⁺-bound dimers were compared with Ni²⁺-bound dimers (rmsd 0.9 Å with 48 outliers), with the largest differences observed in the outer (C-terminal) domains of the dimer.

X-ray absorption spectroscopy on the Ni^{2+} -binding site in wild-type and H152A HpUreE

The Ni *K*-edge XANES spectra of both the wild-type and H152A mutant Ni-*Hp*UreE samples exhibit a single intense white line at ~8347 eV, and a small pre-edge peak that is associated with a $1s \rightarrow 3d$ transition at 8331.6 eV, consistent with a six-co-ordinate Ni²⁺-binding site and octahedral geometry (Figure 6A) [43]. The difference between the spectra obtained

for wild-type and the mutant HpUreE samples arises from the nature of the ligands involved, as revealed by the analysis of the EXAFS spectra (see Supplementary Tables S1–S4 at http://www.BiochemJ.org/bj/441/bj4411017add.htm).

The best multiple-scattering fits of the wild-type Ni-HpUreE (Supplementary Tables S1 and S2) are consistent with the presence of four histidine residues around the Ni²⁺ centre, spread over two shells of N/O-donor ligands (Figure 6B). The features between 2 and 4 Å are best described using a combination of histidine ligands with an angle α of 5° and 10°, separated in two scattering shells. At 2.06(2) Å, a shell is formed by a pair of histidine residues with an angle α of 10° and two N/O ligands. The second shell consists of an additional two histidine residues ($\alpha = 5^{\circ}$) at 2.15(1) Å (Table 3, Figure 6B) and Supplementary Table S2). The separation between the two shells of $\sim 0.09(3)$ Å is at the limit of the resolution (~ 0.1 Å) for the dataset. Splitting the histidine residues into two shells significantly improves the goodness-of-fit, although the reduced χ^2 only drops by a factor of 1.3 (compared with an optimal factor of 1.7). Such a two-shell model is consistent with the wild-type HpUreE Ni²⁺-binding site described by the crystallographic data in the present study, as well as theoretical models [15]. Both studies show the presence of two distinct sets of histidine residues at the Ni²⁺ site in the wild-type HpUreE dimer, the His¹⁰² pair and the His¹⁵² pair, where the His¹⁰² pair is essential for metal binding.

A weakening of the Ni²⁺ complex formation was observed upon mutagenesis of His¹⁵², with the dissociation constant increasing from 0.15 μ M in the wild-type protein to 0.89 μ M in the H152A mutant [15]. EXAFS analysis of the H152A Ni²⁺ site indeed reveals a significant change in the co-ordination environment, which could explain the change in the binding constants. The best fit of the EXAFS spectra for the H152A *Hp*UreE mutant suggests the presence of only two co-ordinating histidine residues around

Figure 6 X-ray absorption spectroscopic analysis of *Hp*UreE at the Ni *K*-edge

(A) Ni *K*-edge XANES spectra of wild-type (WT) and H152A Ni-*Hp*UreE. (B) Fourier-transformed Ni *K*-edge EXAFS spectra of wild-type Ni-*Hp*UreE [no phase correction, Fourier transform (FT) window = $2-13.5 \text{ Å}^{-1}$]. The inset shows the k^3 -weighted unfiltered EXAFS spectra: data (black line), best fit (white circles). (C) Fourier-transformed Ni *K*-edge EXAFS spectra of H152A Ni-*Hp*UreE (no phase correction, FT window = $2-12.5 \text{ Å}^{-1}$). The inset shows the k^3 -weighted unfiltered EXAFS spectra: data (black line), best fit (white circles).

Ni²⁺, together with four other N/O-donor ligands (Figure 6C and Table 3). Although still six-co-ordinate, the H152A *Hp*UreE Ni²⁺-binding site is best fitted using a single shell of ligands, as evident from single-scattering fits (Supplementary Table S3). The multiple-scattering analysis (Supplementary Table S4) shows that this shell contains only two histidine residues, presumably His¹⁰², with an angle α of 10°. This shell is complemented by four additional N/O-donor ligands at 2.09(1) Å. Therefore it is

Table 3 Best fit EXAFS models

WT, wild-type.

Sample	Ligand*	r (Å)	$\sigma^2 (imes 10^3 \text{ \AA}^2)$	%R	χ _ν ²
WT Ni- <i>Hp</i> UreE	2 N _{His} ¹⁰	2.15(2)	3(1)	3.8	36.6
	2 N _{His} ⁵	2.06(1)	2.5(7)		
	2 N/O	2.06(1)	2.5(7)		
H152A Ni-HpUreE	2 N _{His} ¹⁰	2.09(1)	3.7(5)	5.2	32.4
	4 N/O	2.09(1)	3.7(5)		
WT Zn-HpUreE	2 N _{His} ⁵	1.99(2)	5(1)	3.78	17.3
	2 N/O	2.07(3)	12(5)		
	1 Br	2.38(1)	4.3(4)		
	2 N _{His} ⁵	2.00(1)	4(1)	2.61	12.8
	1 N _{His} ⁵	2.16(1)	1(1)		
	1 N/0	2.00(1)	3(2)		
	1 Br	2.39(1)	4.8(5)		
H152A Zn-HpUreE	2 N _{His} ⁵	2.01(1)	6.7(5)	1.85	3.96
	2 N/0	2.01(1)	6.7(5)		
	1 Br	2.39(1)	3.4(2)		

*The superscripted number is the angle α for the histidine ligands.

plausible that upon mutating the more weakly bound histidine residues [His¹⁵² most probably occurring at 2.15(1) Å in the wild-type *Hp*UreE] there is a rearrangement in the Ni²⁺-binding site of *Hp*UreE resulting in changes in the orientation of His¹⁰² to facilitate Ni²⁺ co-ordination by an additional pair of N/O-donor ligands that compensate for the removal of His¹⁵².

X-ray absorption spectroscopy on the Zn²⁺-binding site in wild-type and H152A mutant *Hp*UreE

The differences in the Zn *K*-edge XANES spectra of wild-type and H152A Zn-*Hp*UreE (Figure 7A) bound to one Zn²⁺ equivalent are not significant and are consistent with a four- or five-co-ordinate Zn²⁺ site. The normalized fluorescence intensity approaches 1.5 at its maximum, which favours a five-co-ordinate over a four-co-ordinate binding site [44]. Furthermore, the lack of resolution among the post-edge XANES features suggests that Zn²⁺ co-ordination is dominated by N/O donors [44].

The EXAFS spectrum of wild-type Zn-HpUreE is distinct from the Ni²⁺ complex and shows two features in the Fouriertransformed spectrum that indicate the presence of two scattering shells. For biological samples, this is consistent with a shell of N/O-donor ligands at 1.5 Å (in r-space, uncorrected for phase shifts), and a second shell of sulfur/halogens ligands at 2.0 Å [45]. Single-scattering fits suggest the presence of a bromide ligand in addition to five N/O donors (see Supplementary Table S5 at http://www.BiochemJ.org/bj/441/bj4411017add.htm). Features between 2.5 and 4 Å in r-space are generally attributed to histidine residues. Two models for wild-type Zn-HpUreE emerge from the multiple-scattering analysis. The best-fit model consists of three histidine residues arranged in two shells (Figure 7B). The first shell at 2.00(1) Å consists of an N/O-donor ligand in addition to two histidine ligands with $\alpha = 5^{\circ}$. The second shell at 2.16(1) Å consists of a single histidine residue and an N/O-donor ligand, whereas a third shell contains a bromide ion at 2.39(1) Å. This model is in agreement with the crystallographically determined dimer-of-dimer wild-type Zn-HpUreE crystal structure, which indicates that at least three histidine residues play a role in Zn²⁺ co-ordination. Modelling the EXAFS with four histidine ligands did not improve the fit (see Supplementary Table S6 at http://www.BiochemJ.org/bj/441/bj4411017add.htm). Although the model with three histidine ligands described above gives the best fit in terms of both goodness-of-fit (*R*-factor) and reduced χ^2 ,

Figure 7 X-ray absorption spectroscopic analysis at *Hp*UreE at the Zn *K*-edge

(A) Zn K-edge XANES spectra of wild-type (WT) and H152A Zn-HpUreE. (B) Fourier-transformed EXAFS spectra of wild-type Zn-HpUreE [no phase correction, Fourier transform (FT) window = 2–13.5 Å⁻¹]. The inset shows the k³-weighted unfiltered EXAFS spectra: data (black line), best fit (white circles). (C) Fourier-transformed Zn K-edge EXAFS spectra of H152A Zn-HpUreE (no phase correction, FT window = 2–13.5 Å⁻¹). The inset shows the k³-weighted unfiltered EXAFS spectra: data (black line), best fit (white circles).

it is not statistically distinct from a second model with only two histidine ligands (Table 3). The difference in reduced χ^2 for the two models differ by only a factor of 1.4, and not the optimal 1.8 that would allow the two-histidine model to be ruled out.

Removal of the His¹⁵² pair in the H152A mutant HpUreE results in a Zn²⁺-binding site that is also five-co-ordinate and has a bound bromide at 2.39(1) Å. However, only two histidine residues are readily simulated in the EXAFS analysis, which together with two other N/O-donor ligands, form a scattering shell at 2.01(1) Å (Table 3, Figure 7C and Supplementary Tables S7 and S8 at http://www.BiochemJ.org/bj/441/bj4411017add.htm).

In summary, the best descriptions of the metal-binding sites from XAS analysis indicate that in wild-type HpUreE the Ni²⁺ site is six-co-ordinate with six N/O-donors, of which four are histidine ligands, and the Zn²⁺ site is five-co-ordinate with two or three histidine ligands and a bromide ion. In H152A HpUreE, a six-co-ordinate (N/O)₆Ni site is retained, but includes only two HisN-donor ligands. Similarly, the corresponding Zn²⁺ site in H152A HpUreE retains a five-co-ordinate (N/O)₄Br site that is similar to the wild-type Zn²⁺ site, but contains only two HisNdonor ligands.

DISCUSSION

The present study represents an attempt to clarify the role of the disordered C-terminal portions of the two protomers in homodimeric UreE proteins in the metal binding and release steps that occur when UreE acts as a metallo-chaperone in the process of Ni²⁺ insertion in the urease active site. A role for the C-terminal protein region was initially suggested in the case of BpUreE by metal-binding experiments coupled with Xray absorption spectroscopy, which indicated the presence of a binuclear Ni²⁺-binding site involving the fully conserved His¹⁰⁰ as well as the C-terminal histidine residues [22]. Subsequently, ITC (isothermal titration calorimetry) coupled with site-directed mutagenesis indicated that binding of a single Zn²⁺ or Ni²⁺ ion to the homodimeric HpUreE involves His¹⁰² on the protein surface, and that mutation of His¹⁵² on the disordered C-terminal arm alters the metal-binding properties of the protein [15]. Although Ni²⁺ is essential for enzymatic activity, being present in the active site of the functional urease enzyme, Zn²⁺ has been found to mediate and stabilize the interaction between H. pylori UreE and UreG in vitro [15]. UreG is another accessory protein with a GTPase role in the metallocentre assembly, suggesting a possible functional role for Zn²⁺, in addition to Ni²⁺, in this process [15]. So far, structural information on the Ni²⁺ and Zn²⁺ metal-binding environment of the homodimeric functional form of UreE has been hindered by protein oligomerization, occurring in the solid state, coupled with the molecular disorder of the HpUreE C-terminal region, which is known to be involved in metal binding on the basis of solution studies. In particular, although the crystal structure of apo-UreE from H. pylori was determined to be a dimer, the metal-bound form was described as a tetramer, or a dimer of dimers, with one metal ion bound between the four protein subunits [19]. A similar tetrameric arrangement was observed around a single Zn²⁺ ion in a structural study of BpUreE [18]. These observations prompted us to investigate further the Ni²⁺- and Zn²⁺-binding properties of *Hp*UreE both in the solid state, using X-ray crystallography, and in solution, using X-ray absorption spectroscopy. This multifaceted approach yields consistent results that are in agreement with previous calorimetric studies, and reveals the structural details of the co-ordination environment of a single Ni²⁺ or Zn²⁺ ion bound to a single protein homodimer. The key role played by the conserved histidine ligands in the C-terminal arm of each protomer is thus demonstrated, and the protein motif is observed to gain significant structural ordering upon metal binding.

A comparison of all the *Hp*UreE models (two apo dimers, two Zn^{2+} -bound dimers and one Ni²⁺-bound dimer from the present study, as well as the previously reported apo and Ni²⁺-bound structures) indicates some flexibility of the protein through the linker chain connecting the central domain. The central domain consists of two C-terminal halves of the protein, dimerizing head-to-head, and two peripheral N-terminal domains. On the basis of

temperature factors and rmsd values, the most mobile parts of the models are the loops between strands 1 and 2 and between strands 5 and 6 on the surface of the N-terminal domain. The most disordered region is found towards the end of the C-terminal region, which, in the best case, becomes untraceable in electron density maps after residue Gly¹⁵⁴.

In the crystal structures presented herein, a single metal ion $(Ni^{2+} \text{ or } Zn^{2+})$ is found per protein dimer, in agreement with the stoichiometry previously obtained using ITC [15]. This metal ion is co-ordinated by two His¹⁰² residues, one from each UreE monomer subunit. This arrangement, suggestive of a pair of tweezers, holds the metal cation on the surface of the protein dimer. The rest of the co-ordination environment involves the C-terminal segment, which is in contact with the metal ions through His¹⁵². This protein region is not visible in the apo-protein, but becomes significantly more ordered upon metal binding. Nevertheless, some disorder in the electron density was still observed. The data suggest that the HpUreE binding arrangement, stable on one side and transient on the other, can be easily disengaged, and thus represents a fine balance between binding the metal ion and releasing it to its partners, a balance that is necessary for the chaperone function of UreE in Ni²⁺ trafficking.

In the crystal structure, the co-ordination of the Zn²⁺ site is tetrahedral, whereas the Ni²⁺ ion adopts an axially elongated distorted octahedral site that is approximately square bipyramidal. This reflects the intrinsic co-ordination preferences of the two metal ions, with Zn²⁺ being d¹⁰ and closed-shell, having no stereoelectronic preferences and leading to a co-ordination number and geometry imposed only by steric constraints, whereas Ni²⁺, being d⁸ and open-shell, has stereo-electronic preferences towards a tetragonal 4+2 co-ordination geometry due to the ligand field stabilization energy. The ability of the different cations to achieve their preferred co-ordination number in the complex with UreE indicates a significant flexibility of the protein. Indeed, the angle His¹⁰² N ε 2–Ni²⁺–His¹⁰² N ε 2 is close to 90° and it becomes 106– 109° with Zn²⁺. The other ligands also appear in appropriate positions and numbers. The arrangement of the protein around the Ni²⁺ ion is more open. In addition to the pair of His¹⁰² residues and a pair of His¹⁵², the Ni²⁺ ion takes two additional ligands (a water molecule and Glu4' from a neighbouring protein molecule in the crystal lattice). The Zn^{2+} is surrounded by the two pairs of histidine residues, His¹⁰² and His¹⁵² (with one of the latter histidine ligands possibly displaced by Glu^{154D}).

Conclusions

The structural features of HpUreE established in the present study allow us to propose a role for the C-terminal portions of the UreE dimer in molecular recognition and metal-ion delivery. In particular, the observations strongly support the idea that UreE could exist in two different conformations. In a 'closed' state, the delivered metal ion would be bound to the protein through the two conserved His¹⁰² residues (H. pylori numbering) and to histidine residues invariably found in the C-terminal region of this class of proteins (His¹⁵² in the case of HpUreE). The C-terminal region, disordered in the absence of the metal, but gaining order upon metal binding, would change into an 'open' state when proteinprotein interactions between UreE and a partner protein, or protein complex, prone to receive the metal ion are present. In this form, His152 and analogous residues would be replaced with amino acid residues located on the surface of the protein partner receiving the metal ion from UreE.

Different roles of HpUreE bound to Ni²⁺ and Zn²⁺ are suggested by the observation that Zn²⁺, but not Ni²⁺, stabilizes the interaction between HpUreE and its cognate GTPase HpUreG [15]. The cross-talk between UreE, Ni²⁺ and Zn²⁺ suggests a specific functional role for different metal complexes of this urease accessory protein in regulating the formation of protein–protein complexes involved in enzyme maturation. The present study has shown that the metal-ion selectivity of UreE is based on the different metal-ion co-ordination environments that are dictated by the electronic properties of the metal ion in a mechanism that is facilitated by the flexibility of the C-terminal protein region.

AUTHOR CONTRIBUTION

Matteo Bellucci and Barbara Zambelli expressed and purified HpUreE and its mutants. Katarzyna Banaszak carried out protein crystallization, X-ray diffraction data collection and processing, protein structure solution, refinement and analysis. Vlad Martin-Diaconescu carried out X-ray absorption data collection and analysis. Wojciech Rypniewski, Michael Maroney and Stefano Ciurli designed the study and interpreted the data. All authors contributed to writing and editing the paper, and approved the final version of the paper.

ACKNOWLEDGEMENTS

We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY II for provision of synchrotron radiation at beamlines 14.1 and 14.2. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

FUNDING

This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) [grant number 226716 (to W.R.)]; the National Institutes of Health [grant number R01-GM-69696 (to M.M.)]; and the Italian Ministero dell'Istruzione, dell'Università e della Ricerca PRIN2007 (to S.C.). The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health National Center for Research Resources Biomedical Technology Program.

REFERENCES

- Carter, E. L., Flugga, N., Boer, J. L., Mulrooney, S. B. and Hausinger, R. P. (2009) Interplay of metal ions and urease. Metallomics 1, 207–221
- 2 Zambelli, B., Musiani, F., Benini, S. and Ciurli, S. (2011) Chemistry of Ni²⁺ in urease: sensing, trafficking, and catalysis. Acc. Chem. Res. 44, 520–530
- 3 Callahan, B. P., Yuan, Y. and Wolfenden, R. (2005) The burden borne by urease. J. Am. Chem. Soc. 127, 10828–10829
- 4 Jabri, E., Carr, M. B., Hausinger, R. P. and Karplus, P. A. (1995) The crystal structure of urease from *Klebsiella aerogenes*. Science 268, 998–1004
- 5 Benini, S., Rypniewski, W. R., Wilson, K. S., Miletti, S., Ciurli, S. and Mangani, S. (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from *Bacillus pasteurii*: why urea hydrolysis costs two nickels. Structure 7, 205–216
- 6 Ha, N.-C., Oh, S.-T., Sung, J. Y., Cha, K. A., Lee, M. H. and Oh, B.-H. (2001) Supramolecular assembly and acid resistance of *Helicobacter pylori* urease. Nat. Struct. Biol. 8, 505–509
- 7 Balasubramanian, A. and Ponnuraj, K. (2010) Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J. Mol. Biol. 400, 274–283
- 8 Quiroz, S., Kim, J. K., Mulrooney, S. B. and Hausinger, R. P. (2007) Chaperones of nickel metabolism. In Nickel and its Surprising Impact in Nature (Sigel, A., Sigel, H. and Sigel, R. K.O., eds), pp. 519–544, John Wiley & Sons, Chichester
- 9 Mobley, H. L. T. and Hausinger, R. P. (1989) Microbial urease: significance, regulation and molecular characterization. Microbiol. Rev. 53, 85–108
- Mobley, H. L. T., Island, M. D. and Hausinger, R. P. (1995) Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480
- 11 Park, I.-S. and Hausinger, R. P. (1996) Metal ion interactions with urease and UreD-urease apoproteins. Biochemistry 35, 5345–5352
- 12 Park, I. S. and Hausinger, R. P. (1995) Requirement of carbon dioxide for *in vitro* assembly of the urease nickel metallocenter. Science 267, 1156–1158

- 13 Soriano, A., Colpas, G. J. and Hausinger, R. P. (2000) UreE stimulation of GTP-dependent urease activation in the UreD–UreF–UreG–urease apoprotein complex. Biochemistry 39, 12435–12440
- 14 Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowicz, Y. and Hausinger, R. P. (1992) *Klebsiella aerogenes* urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, ureG) are involved in nickel metallocenter biosynthesis. J. Bacteriol. **174**, 4324–4330
- 15 Bellucci, M., Zambelli, B., Musiani, F., Turano, P. and Ciurli, S. (2009) Helicobacter pylori UreE, a urease accessory protein: specific Ni²⁺ and Zn²⁺ binding properties and interaction with its cognate UreG. Biochem. J. **422**, 91–100
- 16 Boer, J. L., Quiroz-Valenzuela, S., Anderson, K. L. and Hausinger, R. P. (2010) Mutagenesis of *Klebsiella aerogenes* UreG to probe nickel binding and interactions with other urease-related proteins. Biochemistry **49**, 5859–5869
- 17 Song, H.-K., Mulrooney, S. B., Huber, R. and Hausinger, R. P. (2001) Crystal structure of *Klebsiella aerogenes* UreE, a nickel-binding metallochaperone for urease activation. J. Biol. Chem. **276**, 49359–49364
- 18 Remaut, H., Safarov, N., Ciurli, S. and Van Beeumen, J. (2001) Structural basis for Ni²⁺ transport and assembly of the urease active site by the metallochaperone UreE from *Bacillus pasteurii*. J. Biol. Chem. **276**, 49365–49370
- 19 Shi, R., Munger, C., Asinas, A., Benoit, S. L., Miller, E., Matte, A., Maier, R. J. and Cygler, M. (2010) Crystal structures of apo and metal-bound forms of the UreE protein from *Helicobacter pylori*: role of multiple metal binding sites. Biochemistry **49**, 7080–7088
- 20 Benoit, S. and Maier, R. J. (2003) Dependence of *Helicobacter pylori* urease activity on the nickel-sequestering ability of the UreE accessory protein. J. Bacteriol. **185**, 4787–4795
- 21 Lee, M. Y., Pankratz, H. S., Wang, S., Scott, R. A., Finnegan, M. G., Johnson, M. K., Ippolito, J. A., Christianson, D. W. and Hausinger, R. P. (1993) Purification and characterization of *Klebsiella aerogenes* UreE protein: a nickel binding protein that functions in urease metallocenter assembly. Protein Sci. 2, 1042–1052
- 22 Stola, M., Musiani, F., Mangani, S., Turano, P., Safarov, N., Zambelli, B. and Ciurli, S. (2006) The nickel site of *Bacillus pasteurii* UreE, a urease metallo-chaperone, as revealed by metal-binding studies and X-ray absorption spectroscopy. Biochemistry **45**, 6495–6509
- 23 Musiani, F., Zambelli, B., Stola, M. and Ciurli, S. (2004) Nickel trafficking: insights into the fold and function of UreE, a urease metallochaperone. J. Inorg. Biochem. 98, 803–813
- 24 Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325
- 25 Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. and Tucker, P. A. (2005) Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. Sect. D Biol. Crystallogr. **61**, 449–457
- 26 Schneider, T. R. and Sheldrick, G. M. (2002) Substructure solution with SHELXD. Acta Crystallogr. Sect. D Biol. Crystallogr. 58, 1772–1779
- 27 de la Fortelle, E. and Bricogne, G. (1997) Maximum-likelihood heavy-atom parameter refinement for the MIR and MAD methods. Methods Enzymol. **276**, 472–494

Received 13 September 2011/20 October 2011; accepted 20 October 2011 Published as BJ Immediate Publication 20 October 2011, doi:10.1042/BJ20111659

- 28 Cowtan, K. (1994) An automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38
- 29 Terwilliger, T. C. (2000) Maximum-likelihood density modification. Acta Crystallogr. Sect. D Biol. Crystallogr. 56, 965–972
- 30 Perrakis, A., Morris, R. and Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463
- 31 Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A. and Lamzin, V. S. (2004) Breaking good resolutions with ARP/wARP. J. Synchrotron Radiat. **11**, 56–59
- 32 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674
- 33 Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 760–763
- 34 Sheldrick, G. M. (2002) Macromolecular phasing with SHELXE. Z. Kristallogr. 217, 644–650
- 35 Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 53, 240–255
- 36 Webb, S. M. (2005) Sixpack: a graphical user interface for XAS analysis using IFEFFIT. Physica Scripta **T115**, 1011–1014
- 37 Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541
- 38 Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. and Eller, M. J. (1995) Multiple scattering calculations of x-ray absorption spectra. Phys. Rev. B 52, 2995–3009
- Newville, M. (2001) EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 8, 96–100
- 40 Engh, R. A. and Huber, R. (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. Sect. A Found. Crystallogr. **47**, 392–400
- 41 Blackburn, N. J., Hasnain, S. S., Pettingill, T. M. and Strange, R. W. (1991) Copper K-extended X-ray absorption fine structure studies of oxidized and reduced dopamine β-hydroxylase. Confirmation of a sulfur ligand to copper(I) in the reduced enzyme. J. Biol. Chem. **266**, 23120–23127
- 42 Ferreira, G. C., Franco, R., Mangravita, A. and George, G. N. (2002) Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study. Biochemistry 41, 4809–4818
- 43 Colpas, G. J., Maroney, M. J., Bagyinka, C., Kumar, M., Willis, W. S., Suib, S. L., Baidya, N. and Mascharak, P. K. (1991) X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg. Chem. **30**, 920–928
- 44 Jacquamet, L., Aberdam, D., Adrait, A., Hazemann, J. L., Latour, J. M. and Michaud-Soret, I. (1998) X-ray absorption spectroscopy of a new zinc site in the Fur protein from *Escherichia coli*. Biochemistry **37**, 2564–2571
- 45 Strange, R. W., Blackburn, N. J., Knowles, P. F. and Hasnain, S. S. (1987) X-ray absorption spectroscopy of metal–histidine coordination in metalloproteins. Exact simulation of the EXAFS of tetrakis(imidazole)copper(II) nitrate and other copper–imidazole complexes by the use of a multiple-scattering treatment. J. Am. Chem. Soc. **109**, 7157–7162

SUPPLEMENTARY ONLINE DATA Crystallographic and X-ray absorption spectroscopic characterization of *Helicobacter pylori* UreE bound to Ni²⁺ and Zn²⁺ reveals a role for the disordered C-terminal arm in metal trafficking

Katarzyna BANASZAK^{*1}, Vlad MARTIN-DIACONESCU^{†1}, Matteo BELLUCCI[‡], Barbara ZAMBELLI[‡], Wojciech RYPNIEWSKI^{*}, Michael J. MARONEY[†] and Stefano CIURLI[‡]²

*Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland, †Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A., ‡Laboratory of Bioinorganic Chemistry, Department of Agro-Environmental Science and Technology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, and §Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy

Table S1 Ni-HpUreE wild-type single-scattering EXAFS fits

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-2.1 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. Separate sets of Δr_{eff} and σ^2 for the sulfur atoms and nitrogen atoms were used with initial values of 0.0 Å and 0.003 Å² respectively. A universal E_0 was initially set to 8340.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Ni–N and 2.3 Å for Ni–S. (where $\nu = N_{\text{td}_0} - N_{\text{var}}$; $N_{\text{td}_0} =$ number of independent points, and $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ ²	N _{var}	N _{idp}	ν	$1 + 2\sqrt{2/v}$
N ₅	1	0.0275	81.2	391.966	3	7	4	2.4
N ₆	2	0.0214	63.314	305.624	3	7	4	2.4
N ₇	3	0.0317	93.746	452.528	3	7	4	2.4
N ₄ N ₁	4	0.0215	108.461	306.636	5	7	2	3.0
N_3N_2	5	0.021	105.875	299.323	5	7	2	3.0
N_5N_1	6	0.0193	97.578	275.868	5	7	2	3.0
N ₄ N ₂	7	0.0192	96.674	273.311	5	7	2	3.0
N ₃ N ₃	8	0.0192	96.732	273.475	5	7	2	3.0
N ₆ N ₁	9	0.0197	99.512	281.335	5	7	2	3.0
N_5N_2	10	0.0265	133.397	377.133	5	7	2	3.0
N_4N_3	11	0.0257	129.686	366.641	5	7	2	3.0
N_3S_1	12	0.0499	251.561	711.199	5	7	2	3.0
N_1S_3	13	0.0565	284.732	804.981	5	7	2	3.0
N_2S_2	14	0.0526	265.323	750.108	5	7	2	3.0
N_4S_1	15	0.0242	121.872	344.551	5	7	2	3.0
N_3S_2	16	0.0266	133.928	378.633	5	7	2	3.0
N_2S_3	17	0.0278	140.307	396.67	5	7	2	3.0
N_5S_1	18	0.0176	88.599	250.483	5	7	2	3.0
N_1S_5	19	0.0176	88.538	250.309	5	7	2	3.0
N_2S_4	20	0.0179	90.363	255.468	5	7	2	3.0
N_4S_2	21	0.0152	76.494	216.26	5	7	2	3.0
N_3S_3	22	0.014	70.481	199.261	5	7	2	3.0

¹ These authors contributed equally to this work.

² To whom correspondence should be addressed (email stefano.ciurli@unibo.it).

The structural co-ordinates reported will appear in the PDB under accession codes 3TJA, 3TJB and 3TJ9.

Table S2 Ni-HpUreE EXAFS fits using multiple-scattering imidazoles

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-4.2 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), *k*-weight = 3 and $S_0 = 0.9$. All paths with an amplitude of 14% or higher and a r_{eff} value within the fitting range were included for the imidazoles. Separate sets of Δr_{eff} and σ^2 for the histidine ligands (modelled as imidazoles 'H α' ' where α is the angle of rotation) and nitrogen atoms were used with initial values of 0.0 Å and 0.003 Å² respectively; with a universal E_0 value initially set to 8340.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Ni–imidazole and 2.0 Å for Ni–N_{var}; N_{idp} = number of independent points, and N_{var} = number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ^2	ΔE	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
$\begin{array}{c} & & & \\ & N_5 H_1{}^5 & & \\ & N_4 H_2{}^5 & & \\ & N_2 H_4{}^5 & & \\ & N_2 H_4{}^5 & & \\ & N_2 H_2{}^5 H_2{}^5 & & \\ & N_2 H_2{}^5 H_2{}^{10} & & \\ & N_2 H_2{}^5 H_2{}^{10} & & \\ \end{array}$	23 24 25 26 27 28 29 30	0.1202 0.0816 0.06 0.0549 0.0529 0.0423 0.0357 0.0379	104.422 70.877 52.157 47.736 51.058 45.917 38.708 36.559	2092.002 1419.97 1044.923 956.349 920.785 736.249 620.648 659.311		3 3 3 5 7 7 5	23 23 23 23 23 23 23 23 23 23 23	20 20 20 18 16 16 18	1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7
N ₂ H ₄ ⁵ N r (Å) σ ² (×10 ³)	26 2 N/O 2.08(1) 4.5(5)	0.0549 4 N _{His} 2.08(1) 4.5(5)	47.736	956.349	1.7	3	23	20	1.6
N ₂ H ₄ ⁵ N r (Å) σ ² (×10 ³)	27 2 N/0 2.11(2) 4(3)	0.0529 4 N _{His} 2.07(1) 5(1)	51.058	920.785	1.01	5	23	18	1.7
$N_2H_2{}^5H_2{}^5$ N r (Å) σ^2 (×10 ³)	28 2 N/0 2.10(2) 3(2)	0.0423 2 N _{His} 2.15(2) 1(2)	45.917 2 N _{His} 2.03(1) 0(1)	736.249	1.81	7	23	16	1.7
$N_2H_2{}^5H_2{}^{10}$ N r (Å) σ^2 (×10 ³)	29 2 N/O 2.06(2) 3(2)	0.0357 2 N _{His} 2.06(2) 3(2)	38.708 2 N _{His} 2.14(2) 3(2)	620.648	1.17	7	23	16	1.7
${ m N_2H_2{}^5H_2{}^{10}} m N$ r (Å) ${\sigma^2}~(imes~10^3)$	30 2 N/O 2.06(1) 2.5(7)	0.0379 2 N _{His} 2.06(1) 2.5(7)	36.559 2 N _{His} 2.15(2) 3(1)	659.311	1.67	5	23	18	1.7

Table S3 Ni-HpUreE H152A single-scattering EXAFS fits

Fits were carried out in r-space ($\Delta k = 2-12.5 \text{ Å}^{-1}$; $\Delta r = 1-2.0 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. Separate sets of Δr_{eff} and σ^2 for the sulfur atoms and nitrogen atoms were used with initial values of 0.0 Å and 0.003 Å² respectively. A universal E_0 was initially set to 8340.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Ni–N and 2.3 Å for Ni–S. (where $\nu = N_{\text{tdp}} - N_{\text{var}}$ and $N_{\text{tdp}} =$ number of independent points; $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ ²	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
N4	1	0.0602	138.881	575.461	3	7	4	2.4
N ₅	2	0.0283	65.259	270.404	3	7	4	2.4
N ₆	3	0.0192	44.259	183.391	3	7	4	2.4
N ₇	4	0.0262	60.38	250.186	3	7	4	2.4
N ₂ N ₂	5	0.0318	142.003	304.392	5	7	2	3.0
N_3N_1	6	0.0334	148.895	319.165	5	7	2	3.0
N_4N_1	7	0.017	75.827	162.539	5	7	2	3.0
N ₃ N ₂	8	0.016	71.473	153.207	5	7	2	3.0
N ₅ N ₁	9	0.0151	67.316	144.296	5	7	2	3.0
N ₄ N ₂	10	0.0146	65.111	139.568	5	7	2	3.0
N ₃ N ₃	11	0.0143	63.994	137.175	5	7	2	3.0
N ₆ S ₁	12	0.0179	79.673	170.783	5	7	2	3.0
N ₅ S ₁	13	0.0155	69.288	148.523	5	7	2	3.0
N_4S_1	14	0.0229	102	218.642	5	7	2	3.0
N_3S_1	15	0.0426	190.287	407.89	5	7	2	3.0

Table S4 Ni-HpUreE H152A EXAFS fits using multiple-scattering imidazoles

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-4.0 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. All paths with an amplitude of 14 % or higher and a R_{eff} within the fitting range were included for the imidazoles. Separate sets of Δr_{eff} and σ^2 for the histidine ligands (modelled as imidazoles 'H $^{\alpha}$ ', where α is the angle of rotation) and nitrogen atoms were used with initial values of 0.0 Å and 0.003 Å² respectively; with a universal E_0 initially set to 8340.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Ni – imidazole and 2.0 Å for Ni–N (where $\nu = N_{\text{idp}} - N_{\text{var}}$; $N_{\text{idp}} =$ number of independent points, and $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ^2	ΔE	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
N ₅ H ₁ ⁵	16	0.0631	39.547	664.307		3	19	16	1.7
$N_{4}H_{2}^{5}$	17	0.0597	37.394	628.132		3	19	16	1.7
N ₃ H ₃ ⁵	18	0.0741	46.45	780.254		3	19	16	1.7
$N_2H_4^5$	19	0.1044	65.385	1098.33		3	19	16	1.7
$N_4H_2^5$	20	0.0553	39.327	581.95		5	19	14	1.8
N ₄ H ₂ ¹⁰	21	0.0534	33.449	561.875		3	19	16	1.7
N ₄ H ₂ ¹⁰	22	0.0518	32.427	544.706		3	19	16	1.7
$N_1 N_3 H_2^{10}$	23	0.0497	35.344	523.02		5	19	14	1.8
N ₄ H ₂ ⁵ N r (Å) σ ² (×10 ³)	17 4 N/O 2.09(1) 3.3(1)	0.0597 2 N _{His} 2.09(1) 3.3(1)	37.394	628.132	2.56	3	19	16	1.7
${ m N_4 H_2{}^5}$ N r (Å) σ^2 (× 10 ³)	20 4 N/0 2.10(1) 3(1)	0.0553 2 N _{His} 2.07(3) 4(3)	39.327	581.95	1.02	5	19	14	1.8
${ m N_4 H_2}^{10}$ N r (Å) σ^2 (×10 ³)	22 4 N/O 2.09(1) 3.7(5)	0.0518 2 N _{His} 2.09(1) 3.7(5)	32.427	544.706	0.71	3	19	16	1.7
${{N_1 N_3 H_2}^{10}} \ {N_1 N_3 H_2}^{10} \ {N_2 N_2} \ {r(Å)} \ {\sigma^2 (\times 10^3)}$	23 1 N/0 2.13(3) 2(2)	0.0497 3 N/0 2.06(2) 2(2)	35.344 2 N _{His} 2.13(3) 4(3)	523.02	1.39	5	19	14	1.8

Table S5 Zn-HpUreE wild-type single-scattering EXAFS fits

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-2.5 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. Three separate sets of Δr_{eff} and σ^2 for the sulfur atoms, nitrogen ligands and bromide ions were used with initial values of 0.0 Å and 0.003 Å² respectively. A universal E_0 was initially set to 9670.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Zn–N, 2.3 Å for Zn–S and 2.4 Å for Zn–Br (where $\nu = N_{\text{tdp}} - N_{\text{var}}$; $N_{\text{tdp}} =$ number of independent points, and $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ^2	N _{var}	N_{idp}	ν	$1+2\sqrt{2/v}$
N ₃	2	0.5058	439.11	3396.24	3	10	7	2.1
N ₄	3	0.4769	414.062	3202.509	3	10	7	2.1
N ₄	4	0.473	410.612	3175.829	3	10	7	2.1
N ₆	5	0.4835	419.795	3246.848	3	10	7	2.1
N ₇	6	0.502	435.813	3370.744	3	10	7	2.1
S ₂	7	0.4153	360.52	2788.396	3	10	7	2.1
S ₃	8	0.3886	337.374	2609.376	3	10	7	2.1
S ₄	9	0.3883	337.067	2607.003	3	10	7	2.1
S ₅	10	0.4017	348.758	2697.424	3	10	7	2.1
S ₆	11	0.4214	365.819	2829.381	3	10	7	2.1
S ₇	12	0.4431	384.708	2975.475	3	10	7	2.1
Br ₁	13	0.4015	348.593	2696.149	3	10	7	2.1
Br ₂	14	0.3535	306.871	2373.452	3	10	7	2.1
Br ₃	15	0.3373	292.873	2265.191	3	10	7	2.1
Br ₄	16	0.331	287.348	2222.459	3	10	7	2.1
Br ₅	17	0.3268	283.73	2194.477	3	10	7	2.1
Br ₆	18	0.3228	280.264	2167.669	3	10	7	2.1
Br ₇	19	0.3199	277.733	2148.093	3	10	7	2.1
N ₂ N ₁	20	0.2552	298.877	1713.871	5	10	5	2.3
N_2N_2	21	0.284	332.57	1907.081	5	10	5	2.3
N ₃ N ₁	22	0.2572	301.131	1726.801	5	10	5	2.3
N ₄ N ₁	23	0.4647	544.193	3120.609	5	10	5	2.3
N ₃ N ₂	24	0.3161	370.193	2122.824	5	10	5	2.3
N ₅ N ₁	25	0.4491	525.887	3015.63	5	10	5	2.3
N ₃ N ₃	26	0.3878	454.139	2604.202	5	10	5	2.3
N ₆ N ₁	27	0.4628	541.882	3107.356	5	10	5	2.3
N5N2	28	0.4607	539.42	3093,235	5	10	5	2.3
N ₄ N ₃	29	0.4618	540.699	3100.573	5	10	5	2.3
S ₂ S ₁	30	0.1625	190.23	1090.849	5	10	5	2.3
S ₂ S ₂	31	0.0896	104.921	601.654	5	10	5	2.3
S ₃ S ₁	32	0.2296	268.898	1541.96	5	10	5	2.3
S ₄ S ₁	33	0.3815	446.761	2561.895	5	10	5	2.3
S ₃ S ₂	34	0.2862	335.141	1921.825	5	10	5	2.3
S ₅ S ₁	35	0.392	459.061	2632.429	5	10	5	2.3
S ₄ S ₂	36	0.3789	443.639	2543.991	5	10	5	2.3
S ₃ S ₃	37	0.3459	405.057	2322.751	5	10	5	2.3
S ₆ S ₁	38	0.4214	493,407	2829.381	5	10	5	2.3
S ₅ S ₂	39	0.3904	457,178	2621.631	5	10	5	2.3
S ₄ S ₃	40	0.3765	440.875	2528.142	5	10	5	2.3
N ₂ S ₁	41	0.1663	194.778	1116.932	5	10	5	2.3
N ₁ S ₂	42	0.2281	267.059	1531.419	5	10	5	2.3
N_2S_2	43	0.2907	340.454	1952.29	5	10	5	2.3
N ₃ S ₁	44	0.2148	251.528	1442.355	5	10	5	2.3
N_1S_3	45	0.3179	372.289	2134.844	5	10	5	2.3
N_1S_4	46	0.3878	454.1	2603.979	5	10	5	2.3
N_4S_1	47	0.2712	317.515	1820.749	5	10	5	2.3
N_2S_3	48	0.3736	437.44	2508.447	5	10	5	2.3
N_3S_2	49	0.3528	413.09	2368.816	5	10	5	2.3
N ₅ S ₁	50	0.3224	377.464	2164.52	5	10	5	2.3
N_1S_5	51	0.398	466.076	2672.654	5	10	5	2.3
N_4S_2	52	0.3144	368.156	2111.147	5	10	5	2.3
N_2S_4	53	0.1486	174.017	997.879	5	10	5	2.3
N ₃ S ₃	54	0.3678	430.728	2469.957	5	10	5	2.3
N ₆ S ₁	55	0.3595	420.976	2414.033	5	10	5	2.3
N_1S_6	56	0.409	478.95	2746.478	5	10	5	2.3
N_3S_4	57	0.3749	439.032	2517.577	5	10	5	2.3
N_5S_2	58	0.2922	342.111	1961.793	5	10	5	2.3
N ₂ S ₅	59	0.1511	176.945	1014.666	5	10	5	2.3
N_4S_3	60	0.3585	419.741	2406.953	5	10	5	2.3
S ₂ Br ₁	61	0.0789	92.371	529.69	5	10	5	2.3
S ₂ Br ₂	62	0.1334	156.249	895.988	5	10	5	2.3
S ₃ Br ₁	63	0.1164	136.352	781.892	5	10	5	2.3
S ₄ Br ₁	64	0.1538	180.095	1032.735	5	10	5	2.3
S ₃ Br ₂	65	0.2087	244.409	1401.532	5	10	5	2.3
S ₅ Br ₁	66	0.1839	215.368	1235.003	5	10	5	2.3
S ₄ Br ₂	67	0.2005	234.814	1346.514	5	10	5	2.3

Table S5 Continued

Description	Fit no.	R _{factor}	χ ² ν	χ²	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
S ₃ Br ₃	68	0.2001	234.256	1343.312	5	10	5	2.3
S ₆ Br ₁	69	0.2052	240.255	1377.714	5	10	5	2.3
S ₅ Br ₂	70	0.1956	229.086	1313.668	5	10	5	2.3
S ₄ Br ₃	71	0.1882	220.41	1263.912	5	10	5	2.3
N ₂ Br ₁	72	0.0328	38.434	220.393	5	10	5	2.3
N ₁ Br ₂	73	0.0784	91.768	526.234	5	10	5	2.3
N ₂ Br ₂	74	0.0607	71.128	407.877	5	10	5	2.3
N ₃ Br ₁	75	0.025	29.293	167.979	5	10	5	2.3
N ₁ Br ₃	76	0.103	120.615	691.653	5	10	5	2.3
N ₁ Br ₄	77	0.1345	157.507	903.204	5	10	5	2.3
N ₄ Br ₁	78	0.0357	41.845	239.956	5	10	5	2.3
NaBra	79	0 1046	122 437	702 1	5	10	5	23
N ₂ Br ₂	80	0.0703	82 291	471 886	5	10	5	2.3
N ₆ Br ₄	81	0.0532	62 239	356 902	5	10	5	2.3
N₄Br∈	82	0.1662	194 665	1116.28	5	10	5	2.3
N ₄ Br _o	83	0.0832	97 403	558 545	5	10	5	2.0
N ₄ Dr ₂	84	0.0002	171 / 86	083 366	5	10	5	2.0
N-Br-	85	0.1178	127 072	701 182	5	10	5	2.0
N Dr	96	0.1170	02 044	/01.102	5	10	5	2.0
N Dr	00	0.0717	220 564	1216 /0/	5	10	5	2.3
N Dr	07	0.190	107 000	610 202	J	10	5	2.0
N5DI2	00	0.0921	107.022	010.295	5 F	10	5	2.0
N2DI5	89	0.1031	214.432	1229.030	5 F	10	э Г	2.3
N ₄ BI ₃	90	0.1189	139.208	798.014	5	10	5	2.3
N ₃ Br ₄	91	0.1522	178.200	1022.242	5	10	5	2.3
N ₂ S ₁ Br ₁	92	0.0197	35.445	132.363	1	10	3	2.6
	93	0.0339	60.972	227.091	1	10	3	2.6
N ₁ S ₁ Br ₂	94	0.0264	47.479	177.303	1	10	3	2.6
N ₃ S ₁ Br ₁	95	0.0182	32.642	121.896	<u>/</u>	10	3	2.6
N ₁ S ₃ Br ₁	96	0.0315	56.567	211.242	<u>/</u>	10	3	2.6
N ₁ S ₁ Br ₃	97	0.0212	38.168	142.532	[10	3	2.6
$N_4S_1Br_1$	98	0.0266	47.858	178.72	7	10	3	2.6
$N_1S_4Br_1$	99	0.0297	53.432	199.535	7	10	3	2.6
$N_1S_1Br_4$	100	0.0197	35.353	132.023	7	10	3	2.6
$N_2S_2Br_1$	101	0.0172	30.859	115.241	7	10	3	2.6
$N_2S_1Br_2$	102	0.0162	29.068	108.549	7	10	3	2.6
$N_1S_2Br_2$	103	0.0197	35.481	132.498	7	10	3	2.6
$N_3S_2Br_1$	104	0.0171	30.765	114.889	7	10	3	2.6
$N_1S_3Br_2$	105	0.0161	29.015	108.352	7	10	3	2.6
$N_2S_1Br_3$	106	0.014	25.229	94.214	7	10	3	2.6
$N_3S_1Br_2$	107	0.0053	9.61	35.889	7	10	3	2.6
$N_1S_2Br_3$	108	0.0166	29.878	111.576	7	10	3	2.6
$N_2S_3Br_1$	109	0.0152	27.418	102.388	7	10	3	2.6
$N_2S_2Br_2$	110	0.0166	29.854	111.484	7	10	3	2.6
$N_2N_1Br_1$	111	0.0131	23.606	88.154	7	10	3	2.6
$N_2N_2Br_1$	112	0.0141	25.388	94.809	7	10	3	2.6
$N_3N_1Br_1$	113	0.0141	25.382	94.787	7	10	3	2.6
$N_4N_1Br_1$	114	0.0255	45.843	171.194	7	10	3	2.6
N ₃ N ₂ Br ₁	115	0.0189	33.983	126.905	7	10	3	2.6
N ₃ N ₃ Br ₁	116	0.3585	644.56	2407.03	7	10	3	2,6
5 U I	-					-	-	-

Table S6 Zn-HpUreF EXAFS fits using multiple-scattering imidazoles

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-4.1 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. All paths with an amplitude of 14% or higher and a r_{eff} within the fitting range were included for the imidazoles. Separate sets of Δr_{eff} and σ^2 for the sulfur atoms, nitrogen atoms, histidine ligands (modelled as imidazoles 'H^{\alpha}', where α is the angle of rotation) and bromide ions were used with initial values of 0.0 Å and 0.003 Å² respectively; with a universal E_0 initially set to 9670.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Zn–N, 2.3 Å for Zn–S and 2.4 Å for Zn–Br (where $\nu = N_{\text{idp}} - N_{\text{var}}$; $N_{\text{idp}} =$ number of independent points, and $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ ²	ΔΕ	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
N ₂ Br ₁ H ₁ ⁵	117	0.0477	19.398	336.805		5	22	17	1.7
$N_1Br_1H_1^5$	118	0.0654	26.615	462.125		5	22	17	1.7
$N_3Br_1H_1^5$	119	0.0475	19.337	335.749		5	22	17	1.7
$N_5Br_1H_1^5$	120	0.0543	22.104	383.805		5	22	17	1.7
$N_0Br_1H_2^5$	121	0.0841	34.249	594.669		5	22	17	1.7
$N_1Br_1H_2^5$	122	0.0487	19.825	344.219		5	22	17	1.7
$N_2Br_1H_2^{-5}$	123	0.0415	16.885	293.176		5	22	17	1.7
$N_{3}Br_{1}H_{2}^{5}$	124	0.0456	18.57	322.444		5	22	17	1.7
$N_0Br_1H_3^5$	126	0.0696	28.312	491.584		5	22	17	1.7
N ₁ Br ₁ H ₂ ⁵	127	0.0503	20.472	355,455		5	22	17	1.7
N ₂ Br ₁ H ₂ ⁵	128	0.0478	19.442	337,579		5	22	17	1.7
N ₂ Br ₁ H ₂ ⁵	129	0.0532	21.638	375.704		5	22	17	1.7
N₀Br₁H₄ ⁵	130	0.0704	28.668	497.765		5	22	17	1.7
N ₂ Br ₁ H ₂ ⁵	131	0.0377	17 342	266 426		7	22	15	17
N ₂ S ₁ H ₂ ⁵	132	0 1708	78 557	1206 897		7	22	15	17
N ₁ Br ₁ H ₁ ⁵ H ₂ ⁵	133	0.0337	15 523	238 484		7	22	15	17
$N_1Br_1H_2^5H_2^5$	134	0.0444	20 432	313.91		7	22	15	17
N ₀ Br ₁ H ₂ ⁵ H ₂ ⁵	135	0.0451	20 753	318 842		7	22	15	17
N ₂ Br ₄ H ₄ ⁵ H ₂ ⁵	136	0.0288	15 219	203.38		ģ	22	13	1.8
N ₄ Br ₄ H ₄ ⁵ H ₉ ⁵	137	0.0244	12 91	172 514		q	22	13	1.8
$N_1Br_1H_2^5H_2^5$	138	0.0261	12.841	184.438		8	22	14	1.8
N2Br1H25	131	0.0377	17.342	266.426	- 5.31	7	22	15	1.7
N	2 N/O	2 N _{His}	1 Br						
r (Å)	2.07(3)	1.99(2)	2.38(1)						
σ^2 (×10 ³)	12(5)	5(1)	4 3(4)						
	12(0)	0(1)							
N ₁ Br ₁ H ₁ ⁵ H ₂ ⁵	133	0.0337	15.523	238.484	- 1.85	7	22	15	1.7
N	1 N/O	1 Br	1 N _{His}	2 N _{His}					
r (Å)	1.98(1)	2.39(1)	1.98(1)	2.12(2)					
σ^{2} (×10 ³)	2(1)	4.7(4)	2(1)	5(2)					
N Dr L 5L 5	127	0.0244	12.01	170 514	2.02	0	22	12	10
N1D11111112	137 1 N/O	0.0244 1 Dr	12.91 1 N	172.J14 2 N	- 2.92	9	22	15	1.0
n r (Å)	1 11/0	1 DI 0 20(1)	1 IN _{His}	2 IN _{His}					
2 (103)	2.02(2)	2.39(1)	2.10(1)	1.99(2)					
$\sigma^2 (\times 10^{\circ})$	3(2)	4.9(0)	1(1)	4.8(3)					
$N_1Br_1H_1^5H_2^5$	138	0.0261	12.841	184.438	- 2.65	8	22	14	1.8
N	1 N/0	1 Br	1 N _{His}	2 N _{His}		-			-
r (Å)	2.00(1)	2.39(1)	2.16(1)	2.00(1)					
σ^2 (×10 ³)	3(2)	4 8(5)	1(1)	4(1)					
	0(2)	1.0(0)		·(·/					

Table S7 Zn-HpUreE H152A single-scattering fits

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-2.5 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. Three separate sets of Δr_{eff} and σ^2 for the sulfur atoms, nitrogen ligands and bromide ions were used with initial values of 0.0 Å and 0.003 Å² respectively. A universal E_0 was initially set to 9670.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Zn–N, 2.3 Å for Zn–S and 2.4 Å for Zn–Br (where $\nu = N_{\text{idp}} - N_{\text{var}}$; $N_{\text{idp}} =$ number of independent points, and $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ^2	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
N ₂	1	0.6239	286.971	2219.541	3	10	7	2.1
N ₃	2	0.5593	257.247	1989.646	3	10	7	2.1
N ₄	3	0.5323	244.825	1893.567	3	10	7	2.1
N ₅	4	0.5286	243.151	1880.621	3	10	7	2.1
N ₆	5	0.539	247.916	1917.478	3	10	7	2.1
N ₇	6	0.5571	256.228	1981.763	3	10	7	2.1
S ₂	7	0.429	197.307	1526.048	3	10	7	2.1
S ₃	8	0.4125	189.729	1467.439	3	10	7	2.1
S ₄	9	0.4136	190.22	1471.235	3	10	7	2.1
S ₅	10	0.4277	196.729	1521.575	3	10	7	2.1
S ₆	11	0.4483	206.186	1594.718	3	10	7	2.1
S ₇	12	0.4712	216.728	1676.254	3	10	7	2.1
Br ₁	13	0.3725	171.356	1325.331	3	10	7	2.1
Br ₂	14	0.3205	147.439	1140.348	3	10	7	2.1
Br ₃	15	0.304	139.839	1081.569	3	10	7	2.1
Br ₄	16	0.2996	137.818	1065.935	3	10	7	2.1
Br ₅	1/	0.3008	138.348	10/0.034	3	10	<u>/</u>	2.1
Br ₆	18	0.3045	140.07	1083.353	3	10	(2.1
N_2N_1	19	0.3091	191.758	1099.61	5	10	5	2.3
N_2N_2	20	0.3435	213.104	1222.019	5	10	5	2.3
N ₃ N ₁	21	0.3136	194.555	1115.651	5	10	5	2.3
N_4N_1	22	0.4346	269.621	1546.108	5	10	5	2.3
N_3N_2	23	0.3754	232.911	1335.596	5	10	5	2.3
N ₅ N ₁	24	0.0821	50.942	292.12	5	10	5	2.3
N ₄ N ₂	25	0.4223	261.978	1502.28	5	10	5	2.3
N ₃ N ₃	26	0.4482	278.051	1594.45	5	10	5	2.3
N ₆ N ₁	27	0.0894	55.48	318.145	5	10	5	2.3
N ₅ N ₂	28	0.5112	317.168	1818.759	5	10	5	2.3
N ₄ N ₃	29	0.5447	337.929	1937.812	5	10	5	2.3
S ₂ S ₁	30	0.1704	105.723	606.258	5	10	5	2.3
S ₂ S ₂	31	0.2103	130.458	/48.095	5	10	5	2.3
S ₃ S ₁	32	0.2367	146.845	842.062	5	10	5	2.3
S ₄ S ₁	33	0.3979	246.867	1415.631	5	10	5	2.3
S ₃ S ₂	34	0.2907	180.37	1034.312	5	10	5	2.3
S ₅ S ₁	35	0.4018	249.256	1429.325	5	10	5	2.3
5452	36	0.3892	241.463	1384.64	5	10	5	2.3
5353	37	0.3511	217.823	1249.077	5	10	5	2.3
S ₆ S ₁	38	0.4224	262.024	1502.546	5	10	5	2.3
5552 C C	39	0.1704	105.723	000.258	5	10	5	2.3
5453 N.C	40	0.2526	100.50	898.003	5	10	5	2.3
N201	41	0.175	100.09	022.090	5 F	10	5 F	2.0
	42	0.2300	140.104	000. I 1050 500	5 F	10	5 F	2.0
N232	43	0.2909	100.000	702.092	5 F	10	5 F	2.0
N301	44	0.2220	100.229	192.007	5 F	10	5 F	2.0
N103	40	0.3303	204.090	11/4.942	5 F	10	5 F	2.0
N104	40	0.4050	201.040	1443.029	5	10	5	2.0
N C	47	0.4030	231.043	1443.029	5	10	5	2.3
	40	0.3970	240.799	1415.239	5	10	5	2.3
N C	49	0.3970	240.799	1413.239	5	10	5	2.3
N.S.	51	0.3304	70 503	1150.515	5	10	5	2.3
N.C.	52	0.1200	180 828	1088 5/12	5	10	5	2.3
N ₄ 52	53	0.300	2/18 557	1/25 321	5	10	5	2.3
N ₂ S ₂	54	0.1254	77 798	446 123	5	10	5	2.0
N ₂ S ₄	55	0.3828	237 508	1361 958	5	10	5	2.0
N ₄ S _c	56	0.0020	272 475	1562 474	5	10	5	2.0
N _r S _o	57	0.2918	181 051	1038 216	5	10	5	2.0
N ₂ S ₅	58	0.141	87 494	501 721	5	10	5	2.3
N ₄ S ₂	59	0 1053	65,339	374 676	5	10	5	2.3
N2S4	60	0 1316	81 67	468.327	5	10	5	2.3
S₂Br₁	61	0.0558	34 602	198 42	5	10	5	2.3
S ₂ Br ₂	62	0 1053	65.329	374 623	5	10	5	2.3
S ₂ Br ₁	63	0.0879	54 559	312 862	5	10	5	2.3
S ₄ Br ₁	64	0 1243	77 139	442 343	5	10	5	2.3
S ₃ Br ₂	65	0.1519	94,233	540.369	5	10	5	2.3
S ₄ Br ₂	66	0.1828	113 418	650.379	5	10	5	2.3
		5020		000.010			0	2.0

Table S7 Continued

Description	Fit no.	R _{factor}	χ^2_{ν}	χ ²	N _{var}	$N_{\rm idp}$	ν	$1+2\sqrt{2/v}$
S ₃ Br ₃	67	0.185	114.767	658.115	5	10	5	2.3
S ₅ Br ₁	68	0.1565	97.07	556.637	5	10	5	2.3
S ₆ Br ₁	69	0.1818	112.804	646.862	5	10	5	2.3
S ₅ Br ₂	70	0.1822	113.005	648.015	5	10	5	2.3
S ₄ Br ₂	71	0.1765	109.483	627,818	5	10	5	2.3
N ₂ Br ₁	72	0.0219	13.566	77.791	5	10	5	2.3
N ₁ Br ₂	73	0.0596	36 954	211 909	5	10	5	23
NaBra	74	0.0332	20.58	118 014	5	10	5	2.3
N ₂ Br ₄	75	0.0002	5 818	33 363	5	10	5	23
N ₂ Br ₂	76	0.0001	18 033	275 4/1	5	10	5	2.0
N.Br.	77	0.1055	65 /25	275 227	5	10	5	2.0
N Dr	70	0.1000	11 222	6/ 022	5	10	5	2.0
N4DI1 N Dr	70	0.0103	11.002	04.903	J	10	5	2.0
N2DI3	79	0.0090	43.101	247.499	Э F	10	5	2.3
N3DI2	00	0.0362	23.009	130.839	э Г	10	5	2.3
N ₅ Br ₁	81	0.0307	22.797	130.728	5	10	5	2.3
N ₁ Br ₅	82	0.1357	84.2	482.834	5	10	5	2.3
N ₄ Br ₂	83	0.0533	33.058	189.565	5	10	5	2.3
N ₂ Br ₄	84	0.1085	67.328	386.084	5	10	5	2.3
N ₃ Br ₃	85	0.0813	50.45	289.3	5	10	5	2.3
N ₆ Br ₁	86	0.0584	36.242	207.824	5	10	5	2.3
N ₁ Br ₆	87	0.1654	102.585	588.261	5	10	5	2.3
N ₅ Br ₂	88	0.0695	43.125	247.295	5	10	5	2.3
N ₂ Br ₅	89	0.1448	89.834	515.144	5	10	5	2.3
N ₄ Br ₃	90	0.0939	58.239	333.966	5	10	5	2.3
N ₄ Br ₃	91	0.1207	74.887	429.428	5	10	5	2.3
N ₂ S ₁ Br ₁	92	0.0136	12.954	48.375	7	10	3	2.6
N ₁ S ₂ Br ₁	93	0.0296	28.155	105.141	7	10	3	2.6
N ₁ S ₁ Br ₂	94	0.0236	22.497	84.011	7	10	3	2.6
N ₃ S ₁ Br ₁	95	0.0083	7.888	29.457	7	10	3	2.6
N ₁ S ₂ Br ₁	96	0.0308	29.303	109.429	7	10	3	2.6
N ₁ S ₁ Br ₂	97	0.0308	29 303	109 429	7	10	3	2.6
N ₄ S ₄ Br ₄	98	0.011	10.52	39 285	7	10	3	2.6
N ₄ S ₄ Br ₄	QQ	0.0323	30 745	114 815	7	10	3	2.6
N ₁ S ₄ Br ₄	100	0.0020	12 01	/8 212	7	10	3	2.6
N ₁ S ₁ D ₁₄ N ₂ S ₂ Br.	100	0.0130	12.0/1	40.212	7	10	3	2.0
N_S_Br-	107	0.0137	11 21	10.701	7	10	3	2.0
	102	0.0119	17 755	42.204	7	10	2	2.0
	103	0.0100	7 709	20.303	7	10	2	2.0
	104	0.0001	15 262	20.703	7	10	3	2.0
	100	0.010	10.200	00 00C	7	10	2	2.0
	100	0.0004	0.U4 17.405	3U.UZD	1	10	3	2.0
	10/	0.0103	17.435	03.11	1	10	3	2.0
IN125BL3	801	0.0201	19.154	/ 1.529	(10	3	2.6
N ₂ S ₃ Br ₁	109	0.0135	12.819	47.87	(10	3	2.6
$N_2S_2Br_2$	110	0.0141	13.427	50.142	7	10	3	2.6

Table S8 Zn-HpUreE H152A EXAFS fits using multiple-scattering imidazoles

Fits were carried out in r-space ($\Delta k = 2-13.5 \text{ Å}^{-1}$; $\Delta r = 1-4.1 \text{ Å}$) with a Kaiser–Bessel window (dk = 2), k-weight = 3 and $S_0 = 0.9$. All paths with an amplitude of 14% or higher and a r_{eff} within the fitting range were included for the imidazoles. Separate sets of Δr_{eff} and σ^2 for the sulfur atoms, nitrogen atoms, histidine ligands (modelled as imidazoles 'H^{\alpha'}, where α is the angle of rotation) and bromide ions were used with initial values of 0.0 Å and 0.003 Å² respectively; with a universal E_0 initially set to 9670.0 eV and $\Delta E_0 = 0$ eV. Initial input metal–ligand distances were 2.0 Å for Zn–N, 2.3 Å for Zn–S and 2.4 Å for Zn–Br (where $\nu = N_{\text{idp}} - N_{\text{var}}$; $N_{\text{idp}} =$ number of independent points, and $N_{\text{var}} =$ number of variables).

Description	Fit no.	R _{factor}	χ^2_{ν}	χ ²	ΔΕ	N _{var}	N _{idp}	ν	$1+2\sqrt{2/v}$
N ₁ Br ₁ H ₁ ⁵	111	0.0481	10.316	179.111		5	22	17	1.7
N ₂ Br ₁ H ₁ ⁵	112	0.0261	5.591	97.07		5	22	17	1.7
$N_3Br_1H_1^5$	113	0.0242	5.192	90.15		5	22	17	1.7
$N_4Br_1H_1^5$	114	0.0313	6.711	116.529		5	22	17	1.7
$N_3Br_1H_2^5$	115	0.0226	4.852	84.246		5	22	17	1.7
$N_2Br_1H_2^5$	116	0.0185	3.961	68.775		5	22	17	1.7
$N_1Br_1H_2^5$	117	0.0275	5.908	102.574		5	22	17	1.7
$N_0Br_1H_2^5$	118	0.0666	14.292	248.16		5	22	17	1.7
$N_0Br_1H_3^5$	119	0.0483	10.365	179.978		5	22	17	1.7
$N_1Br_1H_3^5$	120	0.0276	5.93	102.965		5	22	17	1.7
$N_2Br_1H_3^5$	121	0.0251	5.377	93.363		5	22	17	1.7
$N_3Br_1H_3^5$	122	0.0315	6.752	117.235		5	22	17	1.7
$ \begin{array}{c} N_2 B r_1 H_2{}^5 \\ N \\ r (\AA) \\ \sigma^2 (\times 10^3) \end{array} $	116 2 N/O 2.01(1) 6.7(5)	0.0185 2 N _{His} 2.01(1) 6.7(5)	3.961 1 Br 2.391(4) 3.4(2)	68.775	- 3.9	5	22	17	1.7
$N_3Br_1H_2^5$ N r (Å) σ^2 (×10 ³)	115 3 N/O 2.01(1) 8.5(6)	0.0226 2 N _{His} 2.01(1) 8.5(6)	4.852 1 Br 2.391(4) 3.5(2)	84.246	- 3.95	5	22	17	1.7

Received 13 September 2011/20 October 2011; accepted 20 October 2011 Published as BJ Immediate Publication 20 October 2011, doi:10.1042/BJ20111659