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ABSTRACT

The CGG repeats are present in the 50-untranslated
region (50-UTR) of the fragile X mental retardation
gene FMR1 and are associated with two diseases:
fragile X-associated tremor ataxia syndrome
(FXTAS) and fragile X syndrome (FXS). FXTAS
occurs when the number of repeats is 55–200 and
FXS develops when the number exceeds 200. FXTAS
is an RNA-mediated disease in which the expanded
CGG tracts form stable structures and sequester
important RNA binding proteins. We obtained and
analysed three crystal structures of double-helical
CGG repeats involving unmodified and 8-Br
modified guanosine residues. Despite the presence
of the non-canonical base pairs, the helices retain
an A-form. In the G–G pairs one guanosine is always
in the syn conformation, the other is anti. There are
two hydrogen bonds between the Watson–Crick
edge of G(anti) and the Hoogsteen edge of G(syn):
O6·N1H and N7·N2H. The G(syn)-G(anti) pair shows
affinity for binding ions in the major groove. G(syn)
causes local unwinding of the helix, compensated
elsewhere along the duplex. CGG helical structures
appear relatively stable compared with CAG and
CUG tracts. This could be an important factor in
the RNA’s ligand binding affinity and specificity.

INTRODUCTION

Tandem repeats of the CGG trinucleotide motif are
abundant in human genome and occur in numerous
genes and transcripts (1). The repeat tracts are often poly-
morphic in length in human population and may play a
regulatory role in gene expression. The CGG repeats
present in the 50-untranslated region (50-UTR) of the
fragile X mental retardation gene FMR1 are associated

with several distinct phenotypes (2). In normal population
the number of CGG repeats varies in the range 5–54 (2,3);
45–54 repeats fall into a subclass named ‘the grey zone’
associated with an increased likelihood of inter-
generational pathogenic expansions (2,4). Tracts of
55–200 CGGs are premutations that can cause progressive
neurodegenerative disorder fragile X-associated tremor
ataxia syndrome (FXTAS) in elderly males (5,6). Female
premutation carriers are at risk of developing premature
ovarian failure (7). More than 200 CGG repeats are full
mutations resulting in fragile X syndrome (FXS), the
most common inherited mental retardation syndrome
in man (8).

FXTAS is an RNA-mediated disease in which the level
of FMR1 mRNA is significantly elevated (9,10). The
expanded tracts form stable structures and sequester im-
portant RNA binding proteins which are normally
required for splicing and other cellular processes (11,12).
The protein sequestration results in the formation of
intranuclear inclusions in neurons and astrocytes (12,13)
and triggers a dynamic formation of aggregates and de-
regulation of alternative splicing of a number of genes in
model cellular systems (11). In addition, the presence of
stable CGG structures inhibits FMR1 translation at the
initiation step, resulting in a deficiency of the encoded
FMRP protein (9,14,15). FMRP is an important RNA
binding protein involved in mRNA trafficking between
the cell nucleus and the cytoplasm and in regulating trans-
lation at the synapse (16).

The structure of the CGG repeats in FMR1 transcripts
is a hairpin whose stem is formed by alternating C–G,
G–C and the non-canonical G–G base pairs (17).
Isolated (CGG)20 repeats are thermodynamically the
most stable hairpins of all the (CNG)20 (N stands for C
or G or A or U) repeats (18,19) which means that G–G
pairs are the strongest of all homobasic interactions.
According to an NMR study (20), the opposing G–G
bases are highly dynamic in CGG repeat hairpin, having
one G residue in anti and the other in syn conformation.
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Short CGG repeats were shown to form a duplex structure
(20,21) and in the presence of potassium ions—
G-tetraplexes (22–24). Thus, an RNA structure formed
by CGG repeats is less clearly defined than in the case
of CUG repeats (18,19,25) and CAG repeats (19,26–28)
for which crystal structures have been determined (29–31).

In this study, we report three crystal structures of
double-helical CGG repeats containing native and 8-Br
modified guanosine residues.

MATERIALS AND METHODS

Synthesis, purification and crystallization of
oligoribonucleotides

GCGGCGGC, GC(8-BrG)GCGGC and GC(8-BrG)GC
GGCGGC oligomers were synthesized on an Applied
Biosystems DNA/RNA synthesizer, using cyanoethyl
phosphoramidite chemistry. Commercially available C
and G phosphoramidites with 20-O-tetrbutyldimethylsilyl
were used for the synthesis of RNA (Glen Research, Azco,
Proligo). The phosphoramidite 8-Br guanosine was
synthesized according to Proctor et al. (32). The details
of deprotection and purification of oligoribonucleotides
were described previously (33).

All crystals were grown by the hanging drop/vapour
diffusion method at 19�C. A single crystal of
GC(8-BrG)GCGGCGGC grew in 10 months. The reser-
voir initially contained 10mM MgCl2 50mM Na cacody-
late, pH 6.0 and 1.0M Li2SO4. The crystallization drop
initially contained 3 ml of RNA at 10mg/ml and 1mM
MgCl2, and 3 ml of the reservoir solution. Crystals of
GCGGCGGC grew in several days from the same
solution as above, but involved crystal seeding and the
starting RNA concentration of 2.4mg/ml. The crystals
grew as clusters of small needles which were then used
for seeding. The seeded crystals grew from a similar
solution but with the RNA concentration of 1.2mg/ml.
They appeared as single blocks but were in fact clusters
of crystals that had to be separated. Crystals of
GC(8-BrG)GCGGC grew in 2 months. The reservoir ini-
tially contained 10mM CaCl2, 0.2M NH4Cl, 50mM Tris–
HCl at pH 8.5 and 30% w/v PEG 4000. The crystalliza-
tion drop initially contained 2 ml of RNA at 10mg/ml and
1mM MgCl2, and 2 ml of the reservoir solution.

X-ray data collection, structure solution and refinement

X-ray diffraction data were collected at 100K: from GCG
GCGGC on BL 14.2 beam line at the BESSY synchrotron
(Berlin) to the resolution of 2.05 Å; from GC(8-BrG)GCG
GCGGC and GC(8-BrG)GCGGC on EMBL X11,
DESY, Hamburg, to the resolution of 1.45 Å and
0.97 Å, respectively. The crystals were cryoprotected by
20% glycerol (v/v) in the mother liquor. The data were
integrated and scaled using the program suite DENZO/
SCALEPACK (34).

The structure of GC(8-BrG)GCGGC was solved first.
SHELXD was used to identify the positions of the Br
atoms by analysing the Patterson function based on the
anomalous signal (35). The program identified two sites at
least five times higher than any other peaks. SHELXE was

used to identify the correct enantiomorph and to calculate
initial phases (35), the calculated electron density map was
uninterpretable in terms of an atomic model, but showed
parallel columns of density indicating stacked RNA
duplexes. DM was used for density modification but the
resulting maps were still uninterpretable (36). The phases
from DM were used in a free-atom phase refinement with
‘shaking’ of the model, using ARP/wARP (37). In a total
of 100 cycles of adding/removing atoms with nine round
of shaking interspersed, the R-factor/R-free statistics ini-
tially remained apparently random but after 25 cycles
started dropping and in the final 50 cycles collapsed to
0.188/0.256. The free-atom electron density map showed
the RNA atoms clearly resolved and a well-defined solvent
structure; the map looked very similar to the final map for
the refined model. Both GC(8-BrG)GCGGCGGC and
GCGGCGGC structures were solved by molecular re-
placement using PHASER (38). The initial models were
poor but sufficient for the purpose of refinement and
model extension. The manual rebuilding and map inspec-
tion were done using Coot (39).
All three structures were refined using Refmac5 (40) and

Phenix (41). The final model of [GC(8-BrG)GCGGC]2
was refined without restraints and with anisotropic tem-
perature factors. The last few cycles of the [GC(8-BrG)GC
GGC]2 refinement were performed using all data,
including the Rfree set. The other two models, GCGGC
GGC and GC(8-BrG)GCGGCGGC, were refined using
isotropic B-factors.
Helical parameters were calculated using 3DNA (42).

Sequence-independent measures were used based on
vectors connecting the C10 atoms of the paired residues,
to avoid computational artefacts arising from
non-canonical base pairing. Program PBEQ-Solver (43)
was used to calculate electrostatic potential map. All
pictures were drawn using PyMOL v0.99rc6 (44). The
coordinates of the crystallographic models have been
deposited with the Protein Data Bank (PDB) with acces-
sion codes 3R1C, 3R1D and 3R1E.

RESULTS AND DISCUSSION

The overall structures

The RNA in all three crystal structures has the form of
duplexes stacking end-to-end and forming bundles of
parallel columns. The crystals of the native RNA
contain 18 (GCGGCGGC)2 duplexes in the P1 unit cell.
Each column consists of all the 18 independent
duplexes stacked consecutively (Supplementary
Figure 1). In the atomic resolution C2 structure, there is
one [GC(8-BrG)GCGGC]2 duplex in the asymmetric unit.
The other monoclinic crystal contains five crystallograph-
ically independent RNA strands. They form three
(GC(8-BrG)GCGGCGGC]2 duplexes, the third consisting
of two symmetry-related strands. The native RNA
and [GC(8-BrG)GCGGCGGC]2 structures contain
sulphate ions from the crystallization medium, while
[GC(8-BrG)GCGGC]2 crystals have Ca2+. All the ions
interact in the major groove with the G–G pairs (details
below). The final models are summarized in Table 1.
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Non-canonical G–G pairing and its consequences on the
duplex

Despite the presence of the non-canonical base pairs, the
helices have a typical A-form, with values of helical twist
in the range 30–32 for all the duplexes, the sugar pucker
C30-endo or, in some cases, C20-exo and Zp values of
2.63±0.22 Å (for the A-form it should be more than
1.5 Å). The helices contain C–G and G–C base pairs
with typical Watson–Crick interactions. Between them
are the non-canonical G–G pairs in which one guanosine
is always in the syn conformation while the other is anti
(Figure 1), experimentally shown to be the preferred ar-
rangement in double helical context (45–47). The syn-anti
geometry of this base pair can be described as G/G cis
Watson–Crick/Hoogsteen according to the nomenclature
proposed by Leontis and Westhof (48). There are two
hydrogen bonds between the guanosine residues:
carbonyl oxygen is bonded to N1H, and N7 to the exo-
amino group. All the H-bond distances are in the range
2.6–3.3 Å. The conformation of the G(syn) residue is add-
itionally stabilized by a hydrogen bond between the
exo-amino function and its phosphate oxygen atom
(3.0 Å).
The syn-anti arrangement avoids the steric clash

between the two bulky guanines within the helical struc-
ture. This is evident from the C10–C10 distances between
the paired residues: 11.3±0.1 Å for G–G, compared with
10.7±0.2 Å for the canonical C–G pairs. The angle � of

the glycosidic bond with the line connecting the C10 atoms
of each pair is 33±4� for the G(syn) residues and 64±3�

for G(anti), compared with 54±3� for the other residues.
This means that the G(syn) is shifted towards the minor
groove and the G(anti) towards to major groove, which
optimizes the H-bonding interactions between the
Hoogsteen and Watson–Crick edges, while avoiding the
clash between the carbonyl oxygen atoms (Figure 1).

The G(syn) residues also show unusual a and g
backbone torsion angles. The a angle, representing a
rotation about the P-O50 bond, is +ac, +ap, or �ap (in
one case) instead of the typical �sc. The angles range
107–182� with the average value of 142�, almost half a
turn from the mean �sc value of �60�. The g angle,
about the C50-C40 bond, is +ap or �ap in the G(syn)

Table 1. Summary of the X-ray data and model refinement for (GCGGCGGC)2, [GC(8-BrG)GCGGCGGC]2 and [GC(8-BrG)GCGGC]2

Crystal GCGGCGGC GC(8-BrG)GCGGC GC(8-BrG)GCGGCGGC

Beam line BESSY BL 14.2 EMBL-X11 EMBL-X11
Wavelength (Å) 0.9200 0.8126 0.8126
Space group P1 C2 C2
Cell parameters a=39.7, b=76.9,

c=85.4 Å, �=90.0,
�=88.6, �=77.3�

a=50.7, b=22.5,
c=44.2 Å, �=117.8�

a=118.6, b=28.6,
c=61.8 Å, �=118.0�

Resolution range (Å) 20.0–2.05 (2.09–2.05)a 20.0–0.97 (0.99–0.97) 20.0–1.45 (1.47–1.45)
Mosaicity (�) 0.3 1 0.3
Exposure time per image (s) 5–10 40 50
Rmerge

b 0.093 (0.488) 0.132 (0.934) 0.112 (0.620)
<I/s(I)> 17 (2.8) 9 (2.5) 10 (3.3)
Completeness (%) 98.4 (97.5) 95.7 (93.4) 99.8 (100.0)
No. unique reflections 60 328 24 974 32 941
Overall multiplicity 4.4 (3.5) 5.4 (4.7) 7.5 (6.3)
Reflections > 3s (%) 71 (40) 77 (29) 77 (50)
B-factor from Wilson plot (Å2) 33 7.8 21.2
Rwork 21.56 13.66 23.21
Rfree

c 25.71 – 27.02
No. RNA atoms 6304 370 1617
Ions 7 SO4

2� 2 Ca2+ 8 SO4
2�

No. water molecules 524 103 207
Other solvent – 1 glycerol –
r.m.s. deviation from ideal values
Bond lengths (Å) 0.005 0.011 0.006
Bond angles (�) 1.145 1.746 1.282

PDB code 3R1C 3R1E 3R1D

aValues in brackets are for the highest resolution shell.
bRmerge=�hkl �i |Ii(hkl)�<I(hkl)>|/�hkl �i Ii(hkl), where Ii(hkl) and <I(hkl)> are the observed individual and mean intensities of a reflection
with indices hkl, respectively, �i is the sum over the individual measurements of a reflection with indices hkl and �hkl is the sum over all reflections.
cRfree was calculated using 5% of the total reflections chosen randomly and omitted from the refinement.

Figure 1. Non-canonical G(syn)–G(anti) pair. Hydrogen bonds are
drawn with dashed lines. Solid line connecting C10 atoms gives a
measure of strand separation. Angles � are marked (see text).
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residues, ranging 152� to �152�. This is �120� from the
usual +sc. This amounts to flipping of the O50-C50 bond
and a local ‘straightening’ of the sugar-phosphate
backbone (Figure 2). The unusual torsion of the
backbone is similar to the ‘extended’ conformation
observed by Haran et al. (49) in a CG step of a DNA
helix. In the present study this conformation seems to be
necessary for the simultaneous (i) Hoogsteen–Watson–
Crick pairing of the guanosines; (ii) the H-bond between
exo-amino group of G(syn) with the phosphate O; and
(iii) stacking against the neighbouring cytosine. These
effects explain the accommodation of the G–G pair
within the helix.

The local straightening of the sugar-phosphate
backbone, amounting to a local unwinding of the helix,
is compensated elsewhere along the duplex, and the
overall statistics do not deviate from typical
(Supplementary Tables 1–4). This is different from the
case of CAG repeats (31) where a similar inversion of
the a and g angles is associated with the overall unwinding
of the helix and broadening of the major groove to >20 Å
(measured as the distance between lines connecting P
atoms). For the native CGG-containing duplexes, the
average width of the major groove was 17.9±0.9 Å, for
the longer Br-modified duplex it was 17.8±2.5 Å and for
the shorter modified structure 14.3 Å. The values for the
minor groove were 15.8±0.5 Å, 15.4±0.5 Å and 16.1 Å,
respectively. The values are not out of the ordinary for the
A form.

Another effect of the G(syn) conformation is that the
guanine has no stacking interaction with the downstream
G–C pair and it stacks against the preceding pair of
residues (Figure 3).

The effect of bromination and the distribution of G–G
conformers

All the 8-Br modified guanosine residues are in the syn
conformation, therefore the pairs are 8-BrG(syn)-
G(anti). As observed before, duplexes containing the
modified residues are more stable than the

corresponding native duplexes. The melting temperature
of [GC(8-BrG)GCGGC]2 is 13

�C higher than for (GCGG
CGGC)2 (21). In structural terms this is probably due to a
restricting effect of Br on the conformational freedom and
excluding the unfavourable G(anti)-G(anti) interactions.
The crystallographic structures bear this out in the sense
that the modified duplexes contain only well ordered
8-BrG(syn)-G(anti) pairs, while in the native duplexes
each G–G pair is observed in one of three possible ar-
rangements: G(syn)-G(anti), G(anti)-G(syn) or a statically
disordered mixture of the two (in 2 out of 36 pairs). The
three base-pairing arrangements occur with different
frequencies and in various combinations of pairs along
the native duplex. Symmetric arrangements are clearly
favoured: anti-syn followed by syn-anti or vice versa (in
14 out of 18 cases). There is a slight preference, which
can be fortuitous, for the former arrangement (8 cases as
opposed to 6). Of the remaining four duplexes, two are
clearly asymmetric and two contains statically disordered
G–G pairs (Supplementary Table 5). In the longer
modified duplexes, containing unmodified G–G pair in
the middle, two of the native G–G pairs are disordered,
showing both possible conformations; the third is ordered.
Apart from restricting the conformational freedom, and

thus defining the conformation of the G–G pair, there is
little crystallographic evidence that bromination alters the
structure compared with the native RNA. The native and
brominated duplexes can be superposed with an r.m.s.
deviation of �1 Å. The similarity is also reflected in
helical parameters. In terms of interactions with the
solvent, the Br atom seems to displace a water molecule,
which in native G(syn) is located �3.2 Å from C8, in the
minor groove, but its main effect appears to be steric. In
terms of H-bonding capacity, bromination alters the pKa
of guanosine from 9.3 to 8.4 (50), but this is likely to be
insignificant.

Solvent interactions and hydration

The exposed Watson–Crick edges of G(syn) residues
interact with sulphate anions. In some instances in the
native RNA structure and in the longer modified duplex,
the sulphate appears well ordered, but in most cases its
orientation is poorly defined. The anions can be distin-
guished from water molecules by the size and shape of
the electron density and the interaction distance from
the RNA (Figure 4b). In the high resolution structure,
where there was no sulphate in the crystallization
medium, an inner complex is observed involving the
carbonyl oxygen atom with a hydrated calcium cation
(Figure 4a). The conditions in the crystallization
medium are far from physiological, nevertheless the
observed complexes indicate a potential of the
solvent-exposed Hoogsteen–Watson–Crick edge for at-
tracting charged species, especially as no interactions
with ions are observed elsewhere in the structures. In the
absence of sulphate, the G(syn) Watson–Crick edge is
hydrated by three water molecules that form a crest
co-planar with the guanine. In the absence of Ca2+, the
G(anti) H-edge is hydrated by two- or three-ordered water
molecules.

Figure 2. The G(syn) residue in a helical context is nearly co-planar with
the adjacent cytosine (pink). The torsion angles a, g (cyan) are flipped
with respect to typical values for A-form and the helix is locally unwound.
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Interestingly, in all the examined instances of the struc-
ture which have sulphate anions in the major groove, the
width of the grooves are similar and close to 18 Å (see
above), as opposed to the Ca2+-containing structure,

in which the groove is narrower by nearly 4 Å. It is
possible that the presence of the anions stabilizes the
width of the major groove.

Electrostatic surface potential

The electrostatic surface potential shows the already
familiar pattern of alternating stripes of positive and
negative potential in the minor groove, similar to the pre-
viously observed distribution in CUG and CAG repeats
(Figure 5). The pattern is due primarily to the C–G and
G–C pairs rather than to the interposed N–N pairs. The
major groove in the CGG structures is mostly electronega-
tive with positive areas generated each by the Watson–
Crick edge of G(syn) and the exo-amino group of the
preceding cytidine residue. The binding of the sulphate
ions corresponds very closely with the electropositive
features associated with G(syn) residues and their
calculated surface potential indeed appears higher than
for the adjacent cytosines, which have not attracted any
ions. The difference in binding potential for ligands can be
explained by the exposed Watson–Crick edge of the
guanine in this position. In addition, the guanines have
stacking interactions only on one side, while the cytosines
are engaged on both their surfaces.

It is harder to explain, just by examining the electrostat-
ic potential, what distinguishes CGG from CUG or CAG,
and why CGG is not recognized by MBNL1 protein
(51–53). An answer could lie in the stability of the CGG
duplex. The non-canonical G–G pair contains two
H-bonds, as opposed to a single bond in U–U and a
weak C–H···N bond in A–A. Therefore the CGG
tracts could be more stable in the duplex form and less
accessible to the protein which appears to bind
single-stranded RNA (54). This is consistent with thermo-
dynamic parameters: �G of duplexes containing CGG is
markedly higher than for the other three repeats, which
are similar (18,19,21).

Figure 3. Stacking interactions in the CGG duplex structure. (A and B)The non-canonical G–G pairs (aquamarine); (C) the canonical CG/GC step.

Figure 4. The hydration of G(syn)–G(anti) pairs in the
GC(8-BrG)GCGGC (A) and in the GC(8-BrG)GCGGCGGC (B)
structures. Ca2+ (green) is bound directly to the carbonyl oxygen
atom of G(anti); a sulphate anion interacts with the WC edge of
G(syn). The 2Fo-Fc electron density map is contoured at 1s level.
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CONCLUSIONS

This is a third in a series of studies aimed at profiling CNG
structures at crystallographic resolution to facilitate drug
design and provide 3D templates for rationalizing bio-
chemical and cytological observations. The need for
detailed RNA structures is clearly signalled in the litera-
ture on rational design of CNG-binding ligands (55–57).

The crystal structures presented here of unmodified and
modified CGG repeats are consistent and allow a general
description of double-stranded CGG tracts and a com-
parison with CUG and CAG structures reported previous-
ly (29,31). The foremost common feature is that all the
known CNG structures form A-helices stabilized by
C–G and G–C pairs acting as sturdy struts. The variety
is provided in between by the non-canonical pairs.

The ‘accommodation problem’ is solved differently for
each N–N pair, but in every case the disruption of the
helix is surprisingly small. The bulky guanines fit within
the helical constraints by a 180� flip about the glycosidic
bond of one of the bases. The equally bulky adenines
retain the anti-conformation, but are shifted out of the
helical axis, towards the major groove. In the one
known example of paired pyrimidines, the relatively
small uracil rings remain some distance apart, making
only one direct hydrogen bond instead of two bonds
which they can make in different environments.
Despite the general resilience of the A-form, character-

istic differences can be observed between the CNG duplex
structures. The parameters that seem to be specially sen-
sitive are helical twist and major groove width. In CGG
helices, we observe local unwinding of the helix around the
G–G pairs, as opposed to the more general unwinding in
the case of CAG structures. The major groove width may
depend on the nature of the ligand which occupies it,
bound to the G–G pair. This work provides examples of
bound calcium and sulphate ions; another example
of sulphate interacting with G–G pairs and possible affect-
ing the groove width is provided by Adamiak and col-
leagues (58).
Thermodynamic stability is an important property that

is difficult to investigate in crystallography, but some
measure is provided by the nature and the count of
hydrogen bonds and the extent of stacking interactions.
In this respect, CGG helical structures appear relatively
stable compared with CAG and CUG tracts—in agree-
ment with calorimetric studies (19,21). This could be an
important factor in the RNA’s ligand binding affinity and
specificity.
So far, the three known CNG repeats have been

observed to bind small ligands in the major groove.
Glycerol, sulphate anion and Ca2+ cations were found to
be associated with N–N pairs of the CNG duplexes. The
interactions depend on hydrogen bonds formed with the
functional groups exposed in the major groove, character-
istic of each N–N pair and to some extent on the electro-
static charge distribution. These can be taken as the main
indicators in designing specific ligands.
A detailed comparison of CGG, CAG and CUG duplex

structures is provided in Supplementary Table 6.
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